scholarly journals Modelling of Microstructural Evolution and Mechanical Properties of Steel Plates Produced by Thermo-Mechanical Control Process.

1992 ◽  
Vol 32 (3) ◽  
pp. 395-404 ◽  
Author(s):  
Atsuhiko Yoshie ◽  
Masaaki Fujioka ◽  
Yoshiyuki Watanabe ◽  
Kiyoshi Nishioka ◽  
Hirofumi Morikawa
1988 ◽  
Vol 110 (3) ◽  
pp. 171-176
Author(s):  
Y. Nakano ◽  
Y. Saito ◽  
K. Amano ◽  
M. Koda ◽  
Y. Sannomiya ◽  
...  

This paper describes the metallurgical approaches for producing 415MPa and 460MPa yield strength offshore structural steel plates and the mechanical properties of the steel plates and their welded joints. A thermo-mechanical control process (TMCP) was adopted to manufacture YP415MPa and YP460MPa steel plates with weldability comparable to conventional YP355MPa steel plates. The Charpy impact and CTOD tests of the steel plates and their welded joints proved to be very good.


2014 ◽  
Vol 783-786 ◽  
pp. 859-866 ◽  
Author(s):  
Dong Sheng Liu ◽  
Chong Xiang Yue ◽  
Huan De Chen ◽  
Bing Gui Cheng

Key parameters for thermomechanical control process (TMCP) and integrated welding operations have been determined to industrialize extra high strength micro-alloyed low carbon SiMnCrMoNiCu steel plates for bridge applications. Confocal Scanning Microscope was used to make In-situ observation on austenite grain growth during reheating. A Gleeble 3800 thermomechanical simulator was employed to investigate transformation behavior of the TMCP conditioned austenite. Integrated industrial rolling trial was conducted to correlate the laboratory observations and commercial production of the plates. Microstructure factors affecting the toughness of the steel were analyzed. Submerged-Arc Welding (SMAW) trails were conducted and the structures and mechanical properties of the weld joints characterized. The representative plate with thickness of 60 mm consisted of acicular ferrite (AF) + refined polygonal ferrite (PF) + granular bainite (GB) across the entire thickness section exhibit yield strength (YS) greater than 560 MPa in transverse direction and excellent Charpy V Notch (CVN) impact toughness greater than 100 J at-40 °C in the parent metal and the weld joints. These provide useful integrated database for producing advanced high strength steel plates via TMCP. Keywords: Thermo-Mechanical Control Process;Weathering Steel Plate for Bridge; Submerged-Arc Welding without Preheating


Sign in / Sign up

Export Citation Format

Share Document