scholarly journals Characterization of Precipitated Carbon by XPS and Its Prevention Mechanism of Sticking during Reduction of Fe2O3 Particles in the Fluidized Bed

2013 ◽  
Vol 53 (3) ◽  
pp. 411-418 ◽  
Author(s):  
Ben Zhang ◽  
Zhi Wang ◽  
Xuzhong Gong ◽  
Zhancheng Guo
Keyword(s):  
1989 ◽  
Vol 21 (4-5) ◽  
pp. 157-165 ◽  
Author(s):  
F. Ehlinger ◽  
J. M. Audic ◽  
G. M. Faup

The characterization of the biofilm of an anaerobic fluidized-bed reactor was completed under standard conditions. The distribution of the fixed protein concentration depended on the level in the reactor. The protein concentration reached 1520 µg.g−1 of support at the top of the reactor and only 1200 µg.g−1 at the bottom after 504 hours of operation but the specific activity of the biofilm was 33×10−4 µM acetate.h−1.mg−1 proteins at the bottom and only 26×10−4 µM.h−1.mg−1 at the top. The efficiency of a fluidized bed reactor and the composition of the biofilm changed with an increase of the pH from 7 to 8.5 during the seeding of the support material. Future development of the biofilm and the specific activity of the support were affected.


2012 ◽  
Vol 80 ◽  
pp. 419-428 ◽  
Author(s):  
V. Vivacqua ◽  
S. Vashisth ◽  
G. Hébrard ◽  
J.R. Grace ◽  
N. Epstein
Keyword(s):  

2018 ◽  
Vol 23 (1) ◽  
Author(s):  
Johny Anderson Severo ◽  
Regina Célia Espinosa Modolo ◽  
Carlos Alberto Mendes Moraes ◽  
Flávia Schwarz Franceschini Zinani

ABSTRACT Improper disposal of sand used in molding processes after casting increases logistical costs and environmental impact because of the presence of the phenolic resin in its composition. The regeneration process of waste foundry phenolic sand (WFPS) aims to recycle this material. As mechanical regeneration methods are not efficient to guarantee 100% cleaning of the sand grains and their use again in the molding process, this work investigated the efficiency of a method of thermal regeneration of this type of residue that can be employed as a complementary procedure. A laboratory-scale fluidized bed reactor was designed and built to regenerate WFPS that was previously treated by a mechanical method. The methodology used to design and construct the fluidized bed prototype is described, as well as the characterization of the residual, the standard clean sand and the regenerated sand. The results of the thermal regeneration in the fluidized bed were very satisfactory with respect to the regeneration efficiency. For the nine process conditions tested, loss on ignition values were reduced when compared to standard clean sand. This study presents the advantages of a combination of two processes, mechanical and thermal regeneration, which allows to reduce the time and eventual temperature of resin removal due to the partial removal of the resin layer or its weakening during the mechanical regeneration process. Of the nine process conditions tested, six had loss on ignition values below the CSS. Thus, the thermal regeneration in the fluidized bed results was quite satisfactory in relation to the regeneration efficiency.


2013 ◽  
Vol 30 (3) ◽  
pp. 521-529 ◽  
Author(s):  
L. L. Oliveira ◽  
R. B. Costa ◽  
I. K. Sakamoto ◽  
I. C. S. Duarte ◽  
E. L. Silva ◽  
...  

2015 ◽  
Vol 129 ◽  
pp. 156-167 ◽  
Author(s):  
Yumin Chen ◽  
C. Jim Lim ◽  
John R. Grace ◽  
Junying Zhang ◽  
Yongchun Zhao ◽  
...  

1981 ◽  
Vol 10 (4-5) ◽  
pp. 307-330 ◽  
Author(s):  
D. WIPPERN ◽  
K. WITTMANN ◽  
J. KÜHNE ◽  
H. HELMRICH ◽  
K. SCHÜGERL

Fuel ◽  
2019 ◽  
Vol 253 ◽  
pp. 1414-1423 ◽  
Author(s):  
Cornelius E. Agu ◽  
Christoph Pfeifer ◽  
Marianne Eikeland ◽  
Lars-Andre Tokheim ◽  
Britt M.E. Moldestad

Sign in / Sign up

Export Citation Format

Share Document