Characterization of pressure fluctuations from a gas–solid fluidized bed by structure density function analysis

2015 ◽  
Vol 129 ◽  
pp. 156-167 ◽  
Author(s):  
Yumin Chen ◽  
C. Jim Lim ◽  
John R. Grace ◽  
Junying Zhang ◽  
Yongchun Zhao ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3935
Author(s):  
Juraj Priscak ◽  
Katharina Fürsatz ◽  
Matthias Kuba ◽  
Nils Skoglund ◽  
Florian Benedikt ◽  
...  

Thermal conversion of ash-rich fuels in fluidized bed systems is often associated with extensive operation problems caused by the high amount of reactive inorganics. This paper investigates the behavior of wheat straw lignin—a potential renewable fuel for dual fluidized bed gasification. The formation of coherent ash residues and its impact on the operation performance has been investigated and was supported by thermochemical equilibrium calculations in FactSage 7.3. The formation of those ash residues, and their subsequent accumulation on the surface of the fluidized bed, causes temperature and pressure fluctuations, which negatively influence the steady-state operation of the fluidized bed process. This paper presents a detailed characterization of the coherent ash residues, which consists mostly of silica and partially molten alkali silicates. Furthermore, the paper gives insights into the formation of these ash residues, dependent on the fuel pretreatment (pelletizing) of the wheat straw lignin, which increases their stability compared to the utilization of non-pelletized fuel.


1989 ◽  
Vol 21 (4-5) ◽  
pp. 157-165 ◽  
Author(s):  
F. Ehlinger ◽  
J. M. Audic ◽  
G. M. Faup

The characterization of the biofilm of an anaerobic fluidized-bed reactor was completed under standard conditions. The distribution of the fixed protein concentration depended on the level in the reactor. The protein concentration reached 1520 µg.g−1 of support at the top of the reactor and only 1200 µg.g−1 at the bottom after 504 hours of operation but the specific activity of the biofilm was 33×10−4 µM acetate.h−1.mg−1 proteins at the bottom and only 26×10−4 µM.h−1.mg−1 at the top. The efficiency of a fluidized bed reactor and the composition of the biofilm changed with an increase of the pH from 7 to 8.5 during the seeding of the support material. Future development of the biofilm and the specific activity of the support were affected.


2021 ◽  
Vol 234 ◽  
pp. 105023
Author(s):  
Ruishen Fan ◽  
Gui Cai ◽  
Xuanyuan Zhou ◽  
Yuxin Qiao ◽  
Jiabao Wang ◽  
...  

2021 ◽  
Vol 8 (3) ◽  
pp. 41
Author(s):  
Fardin Khalili ◽  
Peshala T. Gamage ◽  
Amirtahà Taebi ◽  
Mark E. Johnson ◽  
Randal B. Roberts ◽  
...  

Treatments of atherosclerosis depend on the severity of the disease at the diagnosis time. Non-invasive diagnosis techniques, capable of detecting stenosis at early stages, are essential to reduce associated costs and mortality rates. We used computational fluid dynamics and acoustics analysis to extensively investigate the sound sources arising from high-turbulent fluctuating flow through stenosis. The frequency spectral analysis and proper orthogonal decomposition unveiled the frequency contents of the fluctuations for different severities and decomposed the flow into several frequency bandwidths. Results showed that high-intensity turbulent pressure fluctuations appeared inside the stenosis for severities above 70%, concentrated at plaque surface, and immediately in the post-stenotic region. Analysis of these fluctuations with the progression of the stenosis indicated that (a) there was a distinct break frequency for each severity level, ranging from 40 to 230 Hz, (b) acoustic spatial-frequency maps demonstrated the variation of the frequency content with respect to the distance from the stenosis, and (c) high-energy, high-frequency fluctuations existed inside the stenosis only for severe cases. This information can be essential for predicting the severity level of progressive stenosis, comprehending the nature of the sound sources, and determining the location of the stenosis with respect to the point of measurements.


2020 ◽  
Vol 2 (6) ◽  
pp. 2234-2254 ◽  
Author(s):  
Troels Lindahl Christiansen ◽  
Susan R. Cooper ◽  
Kirsten M. Ø. Jensen

We review the use of pair distribution function analysis for characterization of atomic structure in nanomaterials.


2005 ◽  
Vol 38 (12) ◽  
pp. 960-968 ◽  
Author(s):  
Zhanyong Li ◽  
Noriyuki Kobayashi ◽  
Masanobu Hasatani

Sign in / Sign up

Export Citation Format

Share Document