initial biofilm
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 12)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
Kevin D. Mlynek ◽  
Christopher T. Lopez ◽  
David P. Fetterer ◽  
Janice A. Williams ◽  
Joel A. Bozue

Biofilms have been established as an important lifestyle for bacteria in nature as these structured communities often enable survivability and persistence in a multitude of environments. Francisella tularensis is a facultative intracellular Gram-negative bacterium found throughout much of the northern hemisphere. However, biofilm formation remains understudied and poorly understood in F. tularensis as non-substantial biofilms are typically observed in vitro by the clinically relevant subspecies F. tularensis subsp. tularensis and F. tularensis subsp. holarctica (Type A and B, respectively). Herein, we report conditions under which robust biofilm development was observed in a stochastic, but reproducible manner in Type A and B isolates. The frequency at which biofilm was observed increased temporally and appeared switch-like as progeny from the initial biofilm quickly formed biofilm in a predictable manner regardless of time or propagation with fresh media. The Type B isolates used for this study were found to more readily switch on biofilm formation than Type A isolates. Additionally, pH was found to function as an environmental checkpoint for biofilm initiation independently of the heritable cellular switch. Multiple colony morphologies were observed in biofilm positive cultures leading to the identification of a particular subset of grey variants that constitutively produce biofilm. Further, we found that constitutive biofilm forming isolates delay the onset of a viable non-culturable state. In this study, we demonstrate that a robust biofilm can be developed by clinically relevant F. tularensis isolates, provide a mechanism for biofilm initiation and examine the potential role of biofilm formation.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2814
Author(s):  
Niklas Burgard ◽  
Melanie Kienitz ◽  
Claudia Jourdan ◽  
Stefan Rüttermann

The purpose of the study was to investigate the bacterial viability of the initial biofilm on the surface of experimental modified dental resin composites. Twenty-five healthy individuals with good oral hygiene were included in this study. In a split-mouth design, they received acrylic splints with five experimental composite resin specimens. Four of them were modified with either a novel polymeric hollow-bead delivery system or methacrylated polymerizable Irgasan (Antibacterial B), while one specimen served as an unmodified control (ST). A delivery system based on Poly-Pore® was loaded with one of the active agents: Tego® Protect 5000 (Antiadhesive A), Dimethicone (Antiadhesive B), or Irgasan (Antibacterial A). All study subjects refrained from toothbrushing during the study period. Specimens were detached from the splints after 8 h and given a live/dead staining before fluorescence microscopy. A Friedman test and a post hoc Nemenyi test were applied with a significance level at p < 0.05. In summary, all materials but Antibacterial B showed a significant antibacterial effect compared to ST. The results suggested the role of the materials’ chemistry in the dominance of cell adhesion. In conclusion, dental resin composites with Poly-Pore-loaded active agents showed antibacterial effectiveness in situ.


Author(s):  
Niklas Burgard ◽  
Melanie Kienitz ◽  
Claudia Jourdan ◽  
Stefan Rüttermann

The purpose of the study was to investigate the bacterial viability of the initial biofilm on the surface of experimental modified dental resin composites. Twenty-five healthy individuals with good oral hygiene were included in this study. In a split-mouth design, they received acrylic splints with five experimental composite resin specimens. Four of them were modified with either a novel polymeric hollow beads delivery system or methacrylated polymerizable Irgasan (Antibacterial B), while one specimen served as unmodified control (ST). The delivery system based on Poly-Pore&reg; was loaded with one of the active agents Tego&reg; Protect 5000 (Antiadhesive A), Dimethicone (Antiadhesive B) or Irgasan (Antibacterial A). All study subjects refrained from toothbrushing during the study period. Specimens were detached from the splints after 8h and given a live/dead staining before fluorescence microscopy. Friedman test and post-hoc Nemenyi test were applied with significance level at p &amp;lt; 0.05. In summary all materials but Antibacterial B showed a significant antibacterial effect compared to ST. In conclusion dental resin composites with Poly-Pore loaded active agents show antibacterial effectiveness in situ.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Christine C. Gaylarde ◽  
Jose Antonio Baptista-Neto

AbstractDimension stone is natural rock prepared for building use. It is rapidly colonised by microorganisms that cause discoloration (mainly cyanobacteria, algae and fungi) and structural damage. Microbial mobilisation of ions leads to new superficial or internal deposits, weakening the structure. Cyanobacteria and fungi may penetrate, filling pores or creating new spaces. Lichens, fungus/phototroph associations, colonise surfaces and damage stone through ingrowing rhizines and acid production. Initial degradation produces conditions suitable for germination of seeds of higher plants and further destruction. Emerging techniques to elucidate stone-cell interactions and control of initial biofilm formation that eventuates in stone disintegration are discussed.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Gordon John ◽  
Frank Schwarz ◽  
Alexandra Kravchenko ◽  
Michelle Alicia Ommerborn ◽  
Jürgen Becker

Abstract Background The aim of the current study was the evaluation of initial biofilm adhesion and development on laser-microtextured implant collar surfaces and the examination of effectivity of different biofilm management methods. Methods Initial biofilm formation was investigated on hydrophobic machined and laser-microtextured (Laser-Lok) titanium surfaces and hydrophobic machined and laser-microtextured (Laser-Lok) titanium aluminium vanadium surfaces and compared to hydrophobic smooth pickled titanium surfaces, hydrophilic smooth and acid etched titanium surfaces, hydrophobic sandblasted large grid and acid etched titanium surfaces (titanium Promote) via erythrosine staining and subsequent histomorphometrical analysis and scanning electron microscopic investigations. After decontamination procedures, performed via tooth brushing and glycine powder blasting, clean implant surface was detected via histomorphometrical analysis. Results After 24 h mean initial plaque area was detected in the following descending order: smooth pickled titanium > titanium Promote > hydrophilic smooth and acid etched titanium > Laser-Lok titanium > Laser-Lok titanium aluminium vanadium. The same order was determined after 48 h of biofilm formation. After glycine powder blasting all samples depicted almost 100% clean implant surface. After tooth brushing, Laser-Lok titanium (67.19%) and Laser-Lok titanium aluminium vanadium (69.80%) showed significantly more clean implant surface than the other structured surfaces, hydrophilic smooth and acid etched titanium (50.34%) and titanium Promote (33.89%). Smooth pickled titanium showed almost complete clean implant surface (98.84%) after tooth brushing. Conclusions Both Laser-Lok surfaces showed less initial biofilm formation after 24 and 48 h than the other implant surfaces. In combination with the significant higher clean implant surfaces after domestic decontamination procedure via tooth brushing, both Laser-Lok surfaces could be a candidate for modified implant and abutment designs, especially in transmucosal areas.


2021 ◽  
Vol 70 (4) ◽  
Author(s):  
HONG PENG ◽  
YING-SI WANG ◽  
JIE WANG ◽  
SU-JUAN LI ◽  
TING-LI SUN ◽  
...  

Staphylococcus aureus is the causative agent of numerous and varied clinical infections. Crude aqueous extracts of Melia azedarach fruits inhibit the planktonic growth and initial biofilm formation of S. aureus in a dose-dependent manner. Moreover, the biofilm topologies became sparse and decreased as the concentration of the aqueous extracts increased. RNA-Seq analyses revealed 532 differentially expressed genes (DEGs) after S. aureus exposure to 0.25 mg/l extracts; 319 of them were upregulated, and 213 were downregulated. The majority of DEGs were categorized into abundant sub-groups in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Finally, untargeted UHPLC-MS/MS analyses of the aqueous extracts of M. azedarach fruits demonstrated a highly complex profile in positive and negative electrospray ionization modes. The extracts primarily consisted of lipids and lipid-like molecules, organic acids and their derivatives, phenylpropanoids, polyketides, organoheterocyclic compounds, and benzenoids, annotated by abundant lipid maps and KEGG pathways. Overall, this study provides evidence that the aqueous extracts of M. azedarach fruits can control S. aureus infections and sought to understand the mode of action of these extracts on S. aureus.


2020 ◽  
Vol 14 (1) ◽  
pp. 544-553
Author(s):  
Armelia Sari Widyarman ◽  
Triska Ramajayanti ◽  
Citra Fragrantia Theodorea

Background: The benefits of probiotics for human health have long been proven. Probiotic Lactobacillus reuteri, can produce a beneficial broad-spectrum antibacterial compound called reuterin by metabolizing glycerol. Objective: The aim of the study was to investigate the effect of the Indonesian strain of L. reuteri LC382415 on mono- and dual-species Streptococcus mutans and Streptococcus sanguinis biofilms in vitro. Methods: Streptococcus mutans and S. sanguinis were cultured in BHI broth. Lactobacillus reuteri LC382415 was inoculated on MRS agar. The different concentrations effect of L. reuteri (1×104, 1×106, and 1×108 CFU/mL) with and without glycerol supplementation on microbial biofilms were examined using a biofilm assay after incubation for 1,3,6, and 24-h. The biofilm mass optical density was measured with a microplate spectrophotometer at 490 nm. Chlorhexidine gluconate (0.2%) was used as a positive control, and wells without treatment were used as negative controls. Results: A significant reduction in mono- and dual-species S. mutans and S. sanguinis biofilm formation was observed after treatment with all concentrations of L.reuteri and after all incubation periods (p<0.05) with or without glycerol supplementation. The concentration of 1×104 CFU/mL after 3-h incubation was the most effective in inhibiting biofilm formation, with 87.8% S. mutans, 95.9% S. sanguinis, and 80.4% dual-species biofilm reduction compared to the negative control (p<0.05). Conclusion: The Indonesian strain of L. reuteri effectively reduces mono- and dual-species S.mutans and S. sanguinis biofilms. This suggests that it may be useful in preventing biofilm formation in oral cavities. Future studies on the mechanism of action of this active component are warranted.


Author(s):  
M. M. J. Taufiq ◽  
I. Darah

The antibacterial and antibiofilm activities of crude extract of Lasiodiplodia pseudotheobromae IBRL OS-64 was studied and tested against a foodborne pathogenic bacterium, Yersinia enterocolitica. The ethyl acetate extract exhibited favorable antibacterial activity with the zone of inhibition was 20.3±0.6 mm compared to dichloromethane (15.0±0.3 mm) and butanol (9.0±0.3 mm) extracts. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) values of the extract were 125 and 250 µg/mL, respectively. Structural degeneration studies through scanning electron microscopy (SEM) and transmission electron microscope (TEM) micrographs exhibited major abnormalities that occurred on the bacterial cells after exposure to the extract were complete alterations in their morphology and collapsed of the cells beyond repair. The findings showed that the extract possesses antibiofilm activity against the initial and preformed biofilm of Y. enterocolitica with the highest inhibition value of 69.12% and 58.70%, respectively. The results also revealed the initial biofilm was more susceptible to the extract as compared to pre-formed biofilm. The light microscopy (LM) and SEM photomicrographs proved that the fungal extract significantly eliminates extracellular polysaccharide (EPS) matrices and hinder the attachment of the bacterial cells for biofilm formation. Therefore, the current study suggested the ethyl acetate crude extract from an endophytic fungus, L. pseudotheobromae IBRL OS-64 may be an effective antibacterial and anti-biofilm agent to treat foodborne pathogens.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1774 ◽  
Author(s):  
Lisa Neu ◽  
Frederik Hammes

The environmental conditions in building plumbing systems differ considerably from the larger distribution system and, as a consequence, uncontrolled changes in the drinking water microbiome through selective growth can occur. In this regard, synthetic polymeric plumbing materials are of particular relevance, since they leach assimilable organic carbon that can be utilized for bacterial growth. Here, we discuss the complexity of building plumbing in relation to microbial ecology, especially in the context of low-quality synthetic polymeric materials (i.e., plastics) and highlight the major knowledge gaps in the field. We furthermore show how knowledge on the interaction between material properties (e.g., carbon migration) and microbiology (e.g., growth rate) allows for the quantification of initial biofilm development in buildings. Hence, research towards a comprehensive understanding of these processes and interactions will enable the implementation of knowledge-based management strategies. We argue that the exclusive use of high-quality materials in new building plumbing systems poses a straightforward strategy towards managing the building plumbing microbiome. This can be achieved through comprehensive material testing and knowledge sharing between all stakeholders including architects, planners, plumbers, material producers, home owners, and scientists.


2020 ◽  
Author(s):  
Neu Lisa ◽  
Cossu Laura ◽  
Frederik Hammes

AbstractUpon entering building plumbing systems, drinking water bacteria experience considerable changes in environmental conditions. For example, some flexible polymeric materials leach organic carbon, which increases bacterial growth and reduces diversity. Here we show that the carbon supply by a flexible polymeric material drives nutrient-based selection within establishing biofilm communities. We found that migrating carbon from EPDM coupons resulted in considerable growth for different drinking water communities (0.2 – 3.3 × 108 cells/cm2). All established biofilm communities showed low diversity (29 – 50 taxa/biofilm), with communities dominated by even viewer taxa (e.g., 5 taxa accounting for 94 ± 5 % relative abundance, n = 15). Interestingly, biofilm communities shared some taxa (e.g., Methylobacterium spp.) and families (e.g., Comamonadaceae), despite the difference in starting communities. Moreover, selected biofilm communities performed better than their original communities regarding maximum attachment (91 ± 5 vs. 69 ± 23 %, n = 15) and attachment rate (5.0 ± 1.7 × 104 vs. 2.4 ± 1.2 × 104 cells/cm2/h, n = 15) when exposed to new EPDM coupons. Our results demonstrate nutrient-based selection during initial biofilm formation on a flexible polymeric material and a resulting benefit to selected communities. We anticipate our findings to help connecting observational microbiological findings with their underlying ecological principles. Regarding initial biofilm formation, attachment dynamics, growth, and selection thereof are important for the management of microbial communities. In fact, managing initial colonization by supplying specific carbon and/or introducing consciously chosen/designed communities potentially paves the way for a probiotic approach for building plumbing materials.


Sign in / Sign up

Export Citation Format

Share Document