Optimal control of a 1D diffusion process with a team of mobile actuators under jointly optimal guidance

Author(s):  
Sheng Cheng ◽  
Derek A. Paley
1975 ◽  
Vol 12 (4) ◽  
pp. 859-863 ◽  
Author(s):  
Stanley R. Pliska

The water level in a reservoir is modelled as a controlled diffusion process on a compact interval of the real line. The problem is to control the water discharge rate so as to minimise the expected costs, which depend upon the histories of the water levels and release rates. The form of the optimal control is studied for two general classes of reservoir control problems.


Author(s):  
Penglei Zhao ◽  
Wanchun Chen ◽  
Wenbin Yu

This paper presents the design of a singular-perturbation-based optimal guidance with constraints on terminal flight-path angle and angle of attack. By modeling the flight-control system dynamics as a first-order system, the angle of attack is introduced into the performance index as a state variable. To solve the resulting high-order optimal guidance problem analytically, the posed optimal guidance problem is divided into two sub-problems by utilizing the singular perturbation method according to two time scales: range, altitude, and flight-path angle are the slow time-scale variables while the angle of attack is the fast time-scale variable. The outer solutions are the optimal control of the slow-scale subsystem. Thereafter, by applying the stretching transformation, the fast-scale subsystem establishes the relationships between the outer solutions and acceleration command. Then, the optimal command can be obtained by solving the fast-scale subsystem also using the optimal control theory. The proposed guidance can achieve a near-zero terminal acceleration as well as a small miss distance. The superior performance of the guidance is demonstrated by adequate trajectory simulations.


1967 ◽  
Vol 5 (2) ◽  
pp. 295-308 ◽  
Author(s):  
R. M. Goldwyn ◽  
K. P. Sriram ◽  
M. Graham

1994 ◽  
Vol 32 (3) ◽  
pp. 612-634 ◽  
Author(s):  
Guy Barles ◽  
Christian Daher ◽  
Marc Romano

2011 ◽  
Vol 2011 ◽  
pp. 1-3 ◽  
Author(s):  
Mario Lefebvre

LetX(t)be a controlled one-dimensional diffusion process having constant infinitesimal variance. We consider the problem of optimally controllingX(t)until timeT(x)=min{T1(x),t1}, whereT1(x)is the first-passage time of the process to a given boundary andt1is a fixed constant. The optimal control is obtained explicitly in the particular case whenX(t)is a controlled Wiener process.


Sign in / Sign up

Export Citation Format

Share Document