Leveraging Multiple Connected Traffic Light Signals in an Energy-Efficient Speed Planner**This report and the work described were sponsored by the U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) under the Systems and Modelling for Accelerated Research in Transportation (SMART) Mobility Laboratory Consortium, an initiative of the Energy Efficient Mobility Systems (EEMS) Program.

Author(s):  
Jihun Han ◽  
Daliang Shen ◽  
Dominik Karbowski ◽  
Aymeric Rousseau
2020 ◽  
pp. 1-1
Author(s):  
Jihun Han ◽  
Daliang Shen ◽  
Dominik Karbowski ◽  
Aymeric Rousseau

1982 ◽  
Vol 14 (12) ◽  
pp. 45-59 ◽  
Author(s):  
R L Jolley ◽  
R B Cumming ◽  
N E Lee ◽  
J E Thompson ◽  
L R Lewis

The principal objective of this research program was to examine the effects of disinfection by chlorine, ozone, and ultraviolet light (uv) irradiation on nonvolatile organic constituents relative to chemical effects and the formation of micropollutants. In a comparative study of highly concentrated samples of effluents from nine wastewater treatment plants, it was determined that disinfection with chlorine or ozone both destroys and produces nonvolatile organic constituents including mutagenic constituents. The chemical effects of disinfection by uv irradiation were relatively slight, although the mutagenic constituents in one effluent were eliminated by this treatment. The nine wastewater treatment plants were selected by using the following criteria: disinfection method, nature of wastewater source, type of wastewater treatment, standards for quality of treatment, and geographical location. The treatment plants varied from pilot plant and small plants [0.05 m3/s (1 Mgd)] treating principally domestic waste to large plants [4.4 m3/s (100 Mgd)] treating principally industrial waste. Four plants used only chlorine for disinfection, four used ozone for disinfection, and one used uv irradiation for disinfection. Eight treatment plants used conventional secondary or more advanced wastewater treatment, and one plant used primary treatment. The following methodology was used in this investigation: grab sample collection of 40-L samples of undisinfected and disinfected effluents; concentration of the effluents by lyophilization; high-pressure liquid chromatographic separation of nonvolatile organic constituents in effluent concentrates using uv absorbance, cerate oxidation, and fluorescence detectors; bacterial mutagenicity testing of concentrates and chromatographic fractions; and identification and characterization of nonvolatile organic constituents in mutagenic HPLC fractions. With these procedures, over 100 micropollutants were identified in the wastewater effluent concentrates. Interplant comparison revealed considerable variability in the presence of mutagenic nonvolatile organic constituents in the undisinfected effluent concentrates as well as much variability in the destruction of the mutagenic constituents and the formation of other mutagenic constituents as a result of disinfection. Moreover, the effects varied on samples collected at the same wastewater treatment plant at different periods. No micropollutants known to be mutagens were identified in the mutagenic HPLC fractions separated from the undisinfected, chlorinated, and ozonated effluent concentrates. The mutagenic activity of the nonvolatile organic constituents in one chlorinated effluent concentrate was not attributable to organic chloramines. Most of the mutagens detected in effluent concentrates are direct acting and do not require metabolic activation. Both base-pair substitution mutagens and frame-shift mutagens occurred in the wastewater concentrates, but the former type was more frequent. For many of the compounds in effluents, strain TA-1535 was more sensitive than strain TA-100 in detecting base-pair substitution mutagens. *Research sponsored by the U.S. Department of Energy and the U.S. Environmental Protection Agency. The work was carried out at the Oak Ridge National Laboratory, which is operated by the U.S. Department of Energy under contract W-7405-eng-26 with the Union Carbide Corporation.


Recycling ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 31
Author(s):  
Linda Gaines ◽  
Qiang Dai ◽  
John T. Vaughey ◽  
Samuel Gillard

The expected rapid growth in electric vehicle deployment will inevitably be followed by a corresponding rise in the supply of end-of-life vehicles and their lithium-ion batteries (LIBs). The batteries may be reused, but will eventually be spent and provide a potential domestic resource that can help supply materials for future battery production. However, commercial recycling processes depend on profits from recovery of cobalt, use of which is being reduced in new cathode chemistries. The U.S. Department of Energy, therefore, established the ReCell Center in early 2019 to develop robust LIB recycling technology that would be economical even for batteries that contain no cobalt. The central feature of the technology is recovery of the cathode material with its unique crystalline cathode morphology intact in order to retain its value and functionality. Other materials are recovered as well in order to maximize revenues and minimize waste-handling costs. Analysis and modeling serve to evaluate and compare process options so that we can identify those that will be most economical while still minimizing energy use and environmental impacts. This paper provides background and describes highlights of the center’s first 2 years of operation.


Sign in / Sign up

Export Citation Format

Share Document