scholarly journals Direct Recycling R&D at the ReCell Center

Recycling ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 31
Author(s):  
Linda Gaines ◽  
Qiang Dai ◽  
John T. Vaughey ◽  
Samuel Gillard

The expected rapid growth in electric vehicle deployment will inevitably be followed by a corresponding rise in the supply of end-of-life vehicles and their lithium-ion batteries (LIBs). The batteries may be reused, but will eventually be spent and provide a potential domestic resource that can help supply materials for future battery production. However, commercial recycling processes depend on profits from recovery of cobalt, use of which is being reduced in new cathode chemistries. The U.S. Department of Energy, therefore, established the ReCell Center in early 2019 to develop robust LIB recycling technology that would be economical even for batteries that contain no cobalt. The central feature of the technology is recovery of the cathode material with its unique crystalline cathode morphology intact in order to retain its value and functionality. Other materials are recovered as well in order to maximize revenues and minimize waste-handling costs. Analysis and modeling serve to evaluate and compare process options so that we can identify those that will be most economical while still minimizing energy use and environmental impacts. This paper provides background and describes highlights of the center’s first 2 years of operation.

Author(s):  
Jiao Lin ◽  
Ersha Fan ◽  
Xiaodong Zhang ◽  
Ruling Huang ◽  
Xixue Zhang ◽  
...  

Recycling spent lithium-ion batteries (LIBs) is the most effective way to solve the associated problems of ecological damage and resource depletion. However, the focus of recycling technology is mostly waste...


2018 ◽  
Vol 2018.28 (0) ◽  
pp. 221
Author(s):  
Tomonori TAKEMOTO ◽  
Yasuyuki ISHIDA ◽  
Atsushi NAKAMURA ◽  
Ryohei UESUGI ◽  
Kenichiro SAKAI

Batteries ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 48 ◽  
Author(s):  
Qiang Dai ◽  
Jarod C. Kelly ◽  
Linda Gaines ◽  
Michael Wang

In light of the increasing penetration of electric vehicles (EVs) in the global vehicle market, understanding the environmental impacts of lithium-ion batteries (LIBs) that characterize the EVs is key to sustainable EV deployment. This study analyzes the cradle-to-gate total energy use, greenhouse gas emissions, SOx, NOx, PM10 emissions, and water consumption associated with current industrial production of lithium nickel manganese cobalt oxide (NMC) batteries, with the battery life cycle analysis (LCA) module in the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model, which was recently updated with primary data collected from large-scale commercial battery material producers and automotive LIB manufacturers. The results show that active cathode material, aluminum, and energy use for cell production are the major contributors to the energy and environmental impacts of NMC batteries. However, this study also notes that the impacts could change significantly, depending on where in the world the battery is produced, and where the materials are sourced. In an effort to harmonize existing LCAs of automotive LIBs and guide future research, this study also lays out differences in life cycle inventories (LCIs) for key battery materials among existing LIB LCA studies, and identifies knowledge gaps.


Author(s):  
Kai‐Di Du ◽  
Edison Huixiang Ang ◽  
Xing‐Long Wu ◽  
Yichun Liu

2021 ◽  
Vol 13 (19) ◽  
pp. 10745
Author(s):  
Wenbiao Zhang ◽  
Zehong Li ◽  
Shaopeng Li ◽  
Suocheng Dong ◽  
Bing Xia ◽  
...  

With the rapid development of China’s new energy industry, the use of lithium-ion batteries has increased sharply, and the demand for battery cathode metals such as nickel, cobalt, and manganese has also increased rapidly. Scrapped ceramic saggars that are used to produce the cathode materials of lithium-ion batteries contain large amounts of nickel, cobalt, and manganese compounds; thus, recycling these saggars has high economic value and ecological significance. In this paper, the emergy method is used to analyze the ecological benefits of the typical Ni–Co-containing saggar recycling process in China. This paper constructs an ecoefficiency evaluation index for industrial systems based on emergy analysis to analyze the recycling of nickel and cobalt saggars. The ecological benefits are analyzed, and the following conclusions are drawn. (1) The Ni–Co-containing saggar recycling production line has good economic and ecological benefits. (2) The process has room for improvement in the energy use efficiency and clean energy use of the crystallization process and the efficiency of chemical use in the cascade separation and purification process. This study also establishes a set of emergy analysis methods and indicator system for the evaluation of the ecological benefit of the recycling industry, which can provide a reference for the evaluation of the eco-economic benefit of similar recycling industry processes.


Author(s):  
Shaohua Lu ◽  
Weidong Hu ◽  
Xiaojun Hu

Due to their low cost and improved safety compared to lithium-ion batteries, sodium-ion batteries have attracted worldwide attention in recent decades.


Author(s):  
А.Б. Абдрахманова ◽  
◽  
В. А. Кривченко ◽  
Н. М. Омарова

2017 ◽  
Vol 137 (8) ◽  
pp. 481-486
Author(s):  
Junichi Hayasaka ◽  
Kiwamu Shirakawa ◽  
Nobukiyo Kobayashi ◽  
Kenichi Arai ◽  
Nobuaki Otake ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document