A decision support framework for autonomous driving in normal and emergencysituations

Author(s):  
Wei Xu ◽  
Remi Sainct ◽  
Dominique Gruyer ◽  
Olivier Orfila
2021 ◽  
Vol 11 (14) ◽  
pp. 6373
Author(s):  
Wei Xu ◽  
Rémi Sainct ◽  
Dominique Gruyer ◽  
Olivier Orfila

For a decade, researchers have focused on the development and deployment of road automated mobility. In the development of autonomous driving embedded systems, several stages are required. The first one deals with the perception layers. The second one is dedicated to the risk assessment, the decision and strategy layers and the optimal trajectory planning. The last stage addresses the vehicle control/command. This paper proposes an efficient solution to the second stage and improves a virtual Cooperative Pilot (Co-Pilot) already proposed in 2012. This paper thus introduces a trajectory planning algorithm for automated vehicles (AV), specifically designed for emergency situations and based on the Autonomous Decision-Support Framework (ADSF) of the EU project Trustonomy. This algorithm is an extended version of Elastic Band (EB) with no fixed final position. A set of trajectory nodes is iteratively deduced from obstacles and constraints, thus providing flexibility, fast computation, and physical realism. After introducing the project framework for risk management and the general concept of ADSF, the emergency algorithm is presented and tested under Matlab software. Finally, the Decision-Support framework is implemented under RTMaps software and demonstrated within Pro-SiVIC, a realistic 3D simulation environment. Both the previous virtual Co-Pilot and the new emergency algorithm are combined and used in a near-accident situation and shown in different risky scenarios.


2015 ◽  
Author(s):  
L. K. Kirkman ◽  
John K. Hiers A. ◽  
L. L. Smith ◽  
L. M. Conner ◽  
S. L. Zeigler ◽  
...  

2021 ◽  
Vol 55 (5) ◽  
pp. 2890-2898 ◽  
Author(s):  
Tami C. Bond ◽  
Angela Bosco-Lauth ◽  
Delphine K. Farmer ◽  
Paul W. Francisco ◽  
Jeffrey R. Pierce ◽  
...  

Author(s):  
David Kik ◽  
Matthias Gerhard Wichmann ◽  
Thomas Stefan Spengler

AbstractLocation choice is a crucial planning task with major influence on a company’s future orientation and competitiveness. It is quite complex, since multiple location factors are usually of decision-relevance, incomparable, and sometimes conflictual. Further, ongoing urbanization is associated with locational dynamics posing major challenges for the regional location management of companies and municipalities. For example, respecting urban space as location factor, a scarcity growing over time leads to different assessment and requirements on a company’s behalf. For both companies and municipalities, there is a need for location development which implies an active change of location factor characteristics. Accordingly, considering locational dynamics is vital, as they may be decisive in the location decision-making. Although certain dynamics are considered within conventional Facility Location Problem (FLP) approaches, a systematic consideration of active location development is missing so far. Consequently, they may propagate long-term unfavorable location decisions, as major potentials associated with company-driven and municipal development measures are neglected. Therefore, this paper introduces a comprehensive decision support framework for the Regional Facility Location and Development planning Problem (RFLDP). It provides an operationalization of development measures, and thus anticipates dynamic adaptations to the environment. An established multi-criteria approach is extended to this new application. A complementary guideline ensures its meaningful applicability by practitioners. Based on a real-life case study, the decision support framework’s strength for practical application is demonstrated. Here, major advantages over conventional FLP approaches are highlighted. It is shown that the proposed methodology results in alternative location decisions which are structurally superior.


2021 ◽  
Vol 38 ◽  
pp. 301216
Author(s):  
Daniela Mazzolini ◽  
Paolo Mignone ◽  
Patrizia Pavan ◽  
Gennaro Vessio

2018 ◽  
Vol 51 (6) ◽  
Author(s):  
Ravindra Gettu ◽  
Radhakrishna G. Pillai ◽  
Manu Santhanam ◽  
Anusha S. Basavaraj ◽  
Sundar Rathnarajan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document