Distributed Synchronous Formation Reconfiguration via Low-Thrust

Author(s):  
Shao Jiang ◽  
Song Yingying ◽  
Zhou Qingrui ◽  
Ye Dong ◽  
Sun Zhaowei
2014 ◽  
Vol 875-877 ◽  
pp. 1153-1159 ◽  
Author(s):  
Tao Yang ◽  
Zheng Dong Hu ◽  
Li Bo Yang

This paper investigates a methodology for group coordination and cooperative control of satellites with the aim to achieve formation reconfiguration such as radius enlargement and phase angle adjustment. The proposed approach separates the control law into two distinct stages: planar movement control and orthogonal displacement suppression. The in plane approach is based on a cyclic pursuit strategy, where satellite i pursues satellite i +1. For phase angle adjustment, a control law that makes use of beacons guidance is synthesized to maintain the circling centre stationary. In the orthogonal direction, a linear feed back control on displacement and velocity is used. Simulation of two missions with low thrust are provided, which high light the over all effectiveness of the proposed approach.


2014 ◽  
Vol 926-930 ◽  
pp. 3688-3691
Author(s):  
Jian Wei Shi ◽  
Yuan Wen Cai ◽  
Xiao Chen Xing

Aim to the path programme problem of satellite formation reconfiguration under low thrust, optimization is simulated based on Gauss Pseudospectral Method (GPM). The simulation result demonstrates that the GPM can effectively solve the the path optimization problem.


1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Sign in / Sign up

Export Citation Format

Share Document