Reinforcement Learning Method Based Load shifting strategy with Demand Response

Author(s):  
Lingwu Jin ◽  
Zheng Chen ◽  
Jinwei Li ◽  
Tao Ye
2020 ◽  
Vol 11 (4) ◽  
pp. 3146-3155 ◽  
Author(s):  
Biao Wang ◽  
Yan Li ◽  
Weiyu Ming ◽  
Shaorong Wang

2009 ◽  
Vol 129 (7) ◽  
pp. 1253-1263
Author(s):  
Toru Eguchi ◽  
Takaaki Sekiai ◽  
Akihiro Yamada ◽  
Satoru Shimizu ◽  
Masayuki Fukai

Author(s):  
Hassan Jalili ◽  
Pierluigi Siano

Abstract Demand response programs are useful options in reducing electricity price, congestion relief, load shifting, peak clipping, valley filling and resource adequacy from the system operator’s viewpoint. For this purpose, many models of these programs have been developed. However, the availability of these resources has not been properly modeled in demand response models making them not practical for long-term studies such as in the resource adequacy problem where considering the providers’ responding uncertainties is necessary for long-term studies. In this paper, a model considering providers’ unavailability for unforced demand response programs has been developed. Temperature changes, equipment failures, simultaneous implementation of demand side management resources, popular TV programs and family visits are the main reasons that may affect the availability of the demand response providers to fulfill their commitments. The effectiveness of the proposed model has been demonstrated by numerical simulation.


Author(s):  
Gokhan Demirkiran ◽  
Ozcan Erdener ◽  
Onay Akpinar ◽  
Pelin Demirtas ◽  
M. Yagiz Arik ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 1291
Author(s):  
Bonwoo Gu ◽  
Yunsick Sung

Gomoku is a two-player board game that originated in ancient China. There are various cases of developing Gomoku using artificial intelligence, such as a genetic algorithm and a tree search algorithm. Alpha-Gomoku, Gomoku AI built with Alpha-Go’s algorithm, defines all possible situations in the Gomoku board using Monte-Carlo tree search (MCTS), and minimizes the probability of learning other correct answers in the duplicated Gomoku board situation. However, in the tree search algorithm, the accuracy drops, because the classification criteria are manually set. In this paper, we propose an improved reinforcement learning-based high-level decision approach using convolutional neural networks (CNN). The proposed algorithm expresses each state as One-Hot Encoding based vectors and determines the state of the Gomoku board by combining the similar state of One-Hot Encoding based vectors. Thus, in a case where a stone that is determined by CNN has already been placed or cannot be placed, we suggest a method for selecting an alternative. We verify the proposed method of Gomoku AI in GuPyEngine, a Python-based 3D simulation platform.


Sign in / Sign up

Export Citation Format

Share Document