Multi-view SAR image registration based on feature extraction

Author(s):  
JiaZheng Sun ◽  
Hui Wang ◽  
ShiChao Zheng ◽  
ZhaoYang Zeng ◽  
Xiang Chen ◽  
...  
2018 ◽  
Vol 12 (8) ◽  
pp. 1559-1566 ◽  
Author(s):  
Mohsen Norouzi ◽  
Gholamreza Akbarizadeh ◽  
Fariba Eftekhar

2021 ◽  
Vol 13 (14) ◽  
pp. 2686
Author(s):  
Di Wei ◽  
Yuang Du ◽  
Lan Du ◽  
Lu Li

The existing Synthetic Aperture Radar (SAR) image target detection methods based on convolutional neural networks (CNNs) have achieved remarkable performance, but these methods require a large number of target-level labeled training samples to train the network. Moreover, some clutter is very similar to targets in SAR images with complex scenes, making the target detection task very difficult. Therefore, a SAR target detection network based on a semi-supervised learning and attention mechanism is proposed in this paper. Since the image-level label simply marks whether the image contains the target of interest or not, which is easier to be labeled than the target-level label, the proposed method uses a small number of target-level labeled training samples and a large number of image-level labeled training samples to train the network with a semi-supervised learning algorithm. The proposed network consists of a detection branch and a scene recognition branch with a feature extraction module and an attention module shared between these two branches. The feature extraction module can extract the deep features of the input SAR images, and the attention module can guide the network to focus on the target of interest while suppressing the clutter. During the semi-supervised learning process, the target-level labeled training samples will pass through the detection branch, while the image-level labeled training samples will pass through the scene recognition branch. During the test process, considering the help of global scene information in SAR images for detection, a novel coarse-to-fine detection procedure is proposed. After the coarse scene recognition determining whether the input SAR image contains the target of interest or not, the fine target detection is performed on the image that may contain the target. The experimental results based on the measured SAR dataset demonstrate that the proposed method can achieve better performance than the existing methods.


Author(s):  
Xin Xiong ◽  
Guowang Jin ◽  
Qing Xu ◽  
Hongmin Zhang

2012 ◽  
Vol 241-244 ◽  
pp. 2630-2637
Author(s):  
Chun Rong Wei ◽  
Chu He ◽  
Hong Sun

In order to reduce the noise sensitivity of the SAR (synthetic aperture radar) image registration, a image registration algorithm which basing on the ratio mutual information (RatioMI) is proposed in this paper. Firstly, the ratio images of the reference image and the floating image are gotten by using the ratio operator, and then take the two ratio images as a similar characteristic quantity to construct the similarity measure function which was used in the optimization process of the image registration experiment. The experimental results of the SAR image registration show that the new registration algorithm which based on the RatioMI is effectively in avoiding the local maxima point problems causing by speckle noise.


2016 ◽  
Vol 13 (2) ◽  
pp. 242-246 ◽  
Author(s):  
Fuqiang Liu ◽  
Fukun Bi ◽  
Liang Chen ◽  
Hao Shi ◽  
Wei Liu

Author(s):  
Xiaoqian Yuan ◽  
Chao Chen ◽  
Shan Tian ◽  
Jiandan Zhong

In order to improve the contrast of the difference image and reduce the interference of the speckle noise in the synthetic aperture radar (SAR) image, this paper proposes a SAR image change detection algorithm based on multi-scale feature extraction. In this paper, a kernel matrix with weights is used to extract features of two original images, and then the logarithmic ratio method is used to obtain the difference images of two images, and the change area of the images are extracted. Then, the different sizes of kernel matrix are used to extract the abstract features of different scales of the difference image. This operation can make the difference image have a higher contrast. Finally, the cumulative weighted average is obtained to obtain the final difference image, which can further suppress the speckle noise in the image.


Sign in / Sign up

Export Citation Format

Share Document