Electric Vehicle Model Parameter Estimation with Combined Least Squares and Gradient Descent Method

Author(s):  
Mehmet Ali Gozukucuk ◽  
H. Fatih Ugurdag ◽  
Mert Dedekoy ◽  
Mert Celik ◽  
Taylan Akdogan
Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3302
Author(s):  
Naveed Ishtiaq Chaudhary ◽  
Muhammad Asif Zahoor Raja ◽  
Zeshan Aslam Khan ◽  
Khalid Mehmood Cheema ◽  
Ahmad H. Milyani

Recently, a quasi-fractional order gradient descent (QFGD) algorithm was proposed and successfully applied to solve system identification problem. The QFGD suffers from the overparameterization problem and results in estimating the redundant parameters instead of identifying only the actual parameters of the system. This study develops a novel hierarchical QFDS (HQFGD) algorithm by introducing the concepts of hierarchical identification principle and key term separation idea. The proposed HQFGD is effectively applied to solve the parameter estimation problem of input nonlinear autoregressive with exogeneous noise (INARX) system. A detailed investigation about the performance of HQFGD is conducted under different disturbance conditions considering different fractional orders and learning rate variations. The simulation results validate the better performance of the HQFGD over the standard counterpart in terms of estimation accuracy, convergence speed and robustness.


Geophysics ◽  
2010 ◽  
Vol 75 (4) ◽  
pp. S131-S137 ◽  
Author(s):  
Yanfei Wang ◽  
Changchun Yang

New solution methods were considered for migration deconvolution in seismic imaging problems. It is well known that direct migration methods, using the adjoint operator [Formula: see text], yield a lower-resolution or blurred image, and that the linearized inversion of seismic data for the reflectivity model usually requires solving a (regularized) least-squares migration problem. We observed that the (regularized) least-squares method is computationally expensive, which becomes a severe obstacle for practical applications. Iterative gradient-descent methods were studied and an efficient method for migration deconvolution was developed. The problem was formulated by incorporating regularizing constraints, and then a nonmonotone gradient-descent method was applied to accelerate the convergence. To test the potential of the application of the developed method, synthetic two-dimensional and three-dimensional seismic-migration-deconvolution simulations were performed. Numerical performance indicates that this method is promising for practical seismic migration imaging.


1992 ◽  
Vol 26 (6) ◽  
pp. 789-796 ◽  
Author(s):  
Pablo B. Sáez ◽  
Bruce E. Rittmann

Sign in / Sign up

Export Citation Format

Share Document