Hybrid Access Network Integrated with Radio-over-Fiber and Passive Optical Network

Author(s):  
Liwei Yang ◽  
Junning Zhang ◽  
Wenjie Zhang
2021 ◽  
Author(s):  
Bi-Xiao Wang ◽  
Shi-biao Tang ◽  
Ying-Qiu Mao ◽  
Wenhua Xu ◽  
Ming Cheng ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
N. A. M. Radzi ◽  
N. M. Din ◽  
M. H. Al-Mansoori ◽  
H. Zainol Abidin

The advantages of Ethernet passive optical network (EPON) are setting it to be a natural ubiquitous solution for the access network. In the upstream direction of EPON, the directional property of the splitter requires that the traffic flow be mitigated to avoid collision. A dynamic bandwidth allocation (DBA) scheme is desirable in optimizing the bandwidth usage further. In this paper, a global priority DBA mechanism is discussed. The mechanism aims to reduce the overall delay while enhancing the throughput and fairness. This study was conducted using MATLAB where it was compared to two other algorithms in the literature. The results show that the delay is reduced up to 59% and the throughput and fairness index are improved up to 10% and 6%, respectively.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Hilal Ahmad Sheikh ◽  
Anurag Sharma

AbstractThis research work provides an insight on a radio over fiber (RoF) based passive optical network (RoF-PON) utilizing two diverse electrical phase shifts with optical single sideband modulation (OSSB) by exploiting Mach Zender modulator. The influence of chromatic dispersion (CD) in PONs employing single mode fiber (SMF) is a noteworthy issue and should be limited. The two techniques of OSSB modulation, in view of the two distinct angles of the hybrid coupler are employed for the design and implementation of RoF-PON. The RF signal is partitioned into two ways equally before applying it to the dual drive Mach Zender modulator input, utilizing an electrical hybrid coupler that imparts two discrete phase shifts of 90° and 120° to generate two OSSB signals individually. By utilizing traditional OSSB technique having 90° phase shift, either of the first-order sideband (lower or upper first order) suppression occurs yet second-order harmonics are still existent in the system. As opposed to this, the OSSB technique using 120° phase shift causes the suppression of either lower first order and higher second order sideband or vice versa. When contrasted to the PON based on traditional technique (90° phase shift technique), the suppression of second order sideband in PON using 120° technique lessens the system CD. Hence the PON based on 120° phase shift technique has enhanced functionality in terms of system BER, received power and power losses as compared to that with traditional OSSB technique.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Meet Kumari ◽  
Reecha Sharma ◽  
Anu Sheetal

AbstractNowadays, bandwidth demand is enormously increasing, that causes the existing passive optical network (PON) to become the future optical access network. In this paper, next generation passive optical network 2 (NG-PON2) based, optical time division multiplexing passive optical network (OTDM-PON), wavelength division multiplexing passive optical network (WDM-PON) and time & wavelength division multiplexing passive optical network (TWDM-PON) systems with 20 Gbps (8 × 2.5 Gbps) downstream and 20 Gbps (8 × 2.5 Gbps) upstream capacity for eight optical network units has been proposed. The performance has been compared by varying the input power (−6 to 27 dBm) and transmission distance (10–130 km) in terms of Q-factor and optical received power in the presence of fiber noise and non-linearities. It has been observed that TWDM-PON outperforms OTDM-PON and WDM-PON for high input power and data rate (20/20 Gbps). Also, TWDM-PON shows its superiority for long-reach transmission up to 130 km, which is a cost-effective solution for future NG-PON2 applications.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Binoy Das ◽  
Paulomi Mandal ◽  
Khaleda Mallick ◽  
Rahul Mukherjee ◽  
Gour Chandra Mandal ◽  
...  

AbstractWe demonstrate a radio-over-fiber-based hybrid wavelength-division-multiplexed/time division multiplexed passive optical network (PON) to transmit 5 Gbps data rate to serve 32 subscribers. A broadband light source (BLS) is realized by mutual injection locking between two Fabry-Perot laser diodes at the transmission section to seed wavelength-division-multiplexed channels. Mutual injection locking technique is used to enhance the performance over single Fabry-Perot laser diode and 15  dB/Hz improvements in relative intensity noise(RIN) is realized in our proposed network system. All-optical up-conversion of a 10-GHz 1.25 Gbps on off keying radio frequency (RF) signal is achieved using one single-arm Mach-Zehnder modulator (MZM). Transmission performance over 25-km single mode fiber is investigated. Low bit error rate with enhanced eye-diagram is obtained in our proposed system. As a result, the radio over fiber (ROF)-based wavelength-division-multiplexed/time division multiplexed PON set up employing mutually injection locked Fabry-Perot laser diodes can be a better choice in high speed long-haul optical communication system.


2011 ◽  
Vol 130-134 ◽  
pp. 741-744
Author(s):  
Wen Feng Sun ◽  
Yan Zhao Li

The paper illustrates the optical access network which includes AON (active optical network), PON (Passive optical network) and EOC (Ethernet over COAX) systems, implementing DVB business and IP business. The optimal optical access technology is selected according to different access situations in the project. The optical access network accomplishes the wire access and wireless access. In order to reduce the cost, the coax is efficiently used.


2017 ◽  
Vol 11 (3) ◽  
pp. 819-825
Author(s):  
P. Maheswaravenkatesh ◽  
A. Sivanantha Raja ◽  
T. Jayasankar ◽  
K. Vinothkumar

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Li Li ◽  
Li Hong-Jie

AbstractFor the commercial wavelength division multiplexing passive optical network (WDM-PON) with standard single-mode fiber SSMF-28 and 1:64 passive fiber branching at its far end (RN) and 100 GHz C-band continuous wavelength (CW) lasers, the maximum coverage and optimal transmission power of STM-16 and STM-64 with external modulators at different speeds and wave numbers (4λ, 8λ and 16λ) are obtained, respectively. The performance parameter of the high data rate WDM-PON system is analyzed with respect to a number of channels and reach. In order to improve the network utilization and receiving efficiency, the influence of different channels and transmission distances on the performance of high data rate WDM-PON system is analyzed. Simulation analysis with Optisystem15.0. The maximum transmission power required to achieve the maximum transmission distance under the condition of nonlinear constraints is obtained. In order to save power consumption, the configuration of each multi-band PON is optimized in terms of transmission power. It is found that WDM-PON system has to compromise between aggregated data rate and system reach. Future software defined access network reconfigure the access network depending on the dynamic demand and the resources available. Hence depending on the distance between the optical line terminal (OLT) and optical network unit (ONU) guaranteed data rate can be estimated. ONU is equipped with a tunable optical filter (TOF) hence future wavelength can be reconfigured by both service provider and user. It makes it possible for software to customize optical access network.


Sign in / Sign up

Export Citation Format

Share Document