scholarly journals AMP: An Adaptive Multipath TCP for Data Center Networks

Author(s):  
Morteza Kheirkhah ◽  
Myungjin Lee
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 31782-31790 ◽  
Author(s):  
Jin Ye ◽  
Luting Feng ◽  
Ziqi Xie ◽  
Jiawei Huang ◽  
Xiaohuan Li

Author(s):  
Mahendra Suryavanshi ◽  
Dr. Ajay Kumar ◽  
Dr. Jyoti Yadav

Recent data centers provide dense inter-connectivity between each pair of servers through multiple paths. These data centers offer high aggregate bandwidth and robustness by using multiple paths simultaneously. Multipath TCP (MPTCP) protocol is developed for improving throughput, fairly sharing network link capacity and providing robustness during path failure by utilizing multiple paths over multi-homed data center networks. Running MPTCP protocol for latency-sensitive rack-local short flows with many-to-one communication pattern at the access layer of multi-homed data center networks creates MPTCP incast problem. In this paper, Balanced Multipath TCP (BMPTCP) protocol is proposed to mitigate MPTCP incast problem in multi-homed data center networks. BMPTCP is a window-based congestion control protocol that prevents constant growth of each worker’s subflow congestion window size. BMPTCP computes identical congestion window size for all concurrent subflows by considering bottleneck Top of Rack (ToR) switch buffer size and increasing count of concurrently transmitting workers. This helps BMPTCP to avoid timeout events due to full window loss at ToR switch. Based on current congestion situation at ToR switches, BMPTCP adjust transmission rates of each worker’s subflow so that total amount of data transmitted by all concurrent subflows does not overflow bottleneck ToR switch buffer. Simulation results show that BMPTCP effectively alleviates MPTCP incast. It improves goodput, reduces flow completion time as compared to existing MPTCP and EW-MPTCP protocols.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 19
Author(s):  
Amitkumar J. Nayak ◽  
Amit P. Ganatra

Today, there is a generalized standard usage of internet for all.The devices via multiple technologies that facilitates to provide few communication methods to scholars to work with. By forming multiple paths in the data center network, latest generation data centers offer maximum bandwidth with robustness. To utilize this bandwidth, it is necessary that different data flows take separate paths. In brief, a single-path transport seems inappropriate for such networks. By using Multipath TCP, we must reconsider data center networks, with a diverse approach as to the association between topology, transport protocols, routing. Multipath TCP allows certain topologies that single path TCP cannot use. In newer generation data centers, Multipath TCP is already deployable using extensively deployed technologies such as Equal-cost multipath routing. But, major benefits will come when data centers are specifically designed for multipath transports. Due to manifold of technologies like Cloud computing, social networking, and information networks there is a need to deploy the number of large data centers. While Transport Control Protocol is the leading Layer-3 transport protocol in data center networks, the operating conditions like high bandwidth, small-buffered switches, and traffic patterns causes poor performance of TCP.  Data Center TCP algorithm has newly been anticipated as a TCP option for data centers which address these limitations. It is worth noting that traditional TCP protocol.  


2018 ◽  
Vol 12 (1) ◽  
pp. 1056-1059 ◽  
Author(s):  
Jaehyun Hwang ◽  
Anwar Walid ◽  
Joon Yoo

2016 ◽  
Vol E99.B (11) ◽  
pp. 2361-2372 ◽  
Author(s):  
Chang RUAN ◽  
Jianxin WANG ◽  
Jiawei HUANG ◽  
Wanchun JIANG

Author(s):  
Jiawei Huang ◽  
Shiqi Wang ◽  
Shuping Li ◽  
Shaojun Zou ◽  
Jinbin Hu ◽  
...  

AbstractModern data center networks typically adopt multi-rooted tree topologies such leaf-spine and fat-tree to provide high bisection bandwidth. Load balancing is critical to achieve low latency and high throughput. Although the per-packet schemes such as Random Packet Spraying (RPS) can achieve high network utilization and near-optimal tail latency in symmetric topologies, they are prone to cause significant packet reordering and degrade the network performance. Moreover, some coding-based schemes are proposed to alleviate the problem of packet reordering and loss. Unfortunately, these schemes ignore the traffic characteristics of data center network and cannot achieve good network performance. In this paper, we propose a Heterogeneous Traffic-aware Partition Coding named HTPC to eliminate the impact of packet reordering and improve the performance of short and long flows. HTPC smoothly adjusts the number of redundant packets based on the multi-path congestion information and the traffic characteristics so that the tailing probability of short flows and the timeout probability of long flows can be reduced. Through a series of large-scale NS2 simulations, we demonstrate that HTPC reduces average flow completion time by up to 60% compared with the state-of-the-art mechanisms.


Sign in / Sign up

Export Citation Format

Share Document