Three-phase Inductive Power Transfer System with 12 coils for Radiation Noise Reduction

Author(s):  
Keisuke Kusaka ◽  
Jun-ichi Itoh
2007 ◽  
Vol 54 (6) ◽  
pp. 3370-3378 ◽  
Author(s):  
Grant A. Covic ◽  
John T. Boys ◽  
Michael L. G. Kissin ◽  
Howard G. Lu

2019 ◽  
Vol 10 (2) ◽  
pp. 40
Author(s):  
Keisuke Kusaka ◽  
Kent Inoue ◽  
Jun-ichi Itoh

This paper provides a comparative study on radiation noise reduction methods for inductive power transfer systems using spread spectrum. In the spread spectrum methods, the radiation noise is reduced by continuously changing an output frequency of the inverter according to pseudorandom numbers. The effects of the radiation noise reduction are evaluated with the inductive power transfer (IPT) system with series-parallel compensation and series-series compensation. The results show that the peak values of the radiation noise around the fundamental frequency are reduced by 7.8 and 8.1 dBμA in maximum with the series-series compensation method and the series-parallel compensation method, respectively in comparison with the constant frequency operation. From these results, the proposed methods are effective for both the series-series compensation and series-parallel compensation method. Moreover, the efficiency of the IPT system with spread spectrum method is evaluated. The maximum DC-to-DC efficiency with the spread spectrum is 94.1% and 92.0% with the series-series compensation and the series-parallel compensation, respectively.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 575
Author(s):  
Qian Su ◽  
Xin Liu ◽  
Yan Li ◽  
Xiaosong Wang ◽  
Zhiqiang Wang ◽  
...  

Compensation is crucial in the inductive power transfer system to achieve load-independent constant voltage or constant current output, near-zero reactive power, higher design freedom, and zero-voltage switching of the driver circuit. This article proposes a simple, comprehensive, and innovative graphic design methodology for compensation topology to realize load-independent output at zero-phase-angle frequencies. Four types of graphical models of the loosely coupled transformer that utilize the ideal transformer and gyrator are presented. The combination of four types of models with the source-side/load-side conversion model can realize the load-independent output from the source to load. Instead of previous design methods of solving the equations derived from the circuits, the load-independent frequency, zero-phase angle (ZPA) conditions, and source-to-load voltage/current gain of the compensation topology can be intuitively obtained using the circuit model given in this paper. In addition, not limited to only research of the existing compensation topology, based on the design methodology in this paper, 12 novel compensation topologies that are free from the constraints of transformer parameters and independent of load variations are stated and verified by simulations. In addition, a novel prototype of primary-series inductor–capacitance–capacitance (S/LCC) topology is constructed to demonstrate the proposed design approach. The simulation and experimental results are consistent with the theory, indicating the correctness of the design method.


Sign in / Sign up

Export Citation Format

Share Document