Activation Propagation in Cardiac Ventricles Using the Model of the Normal and Disrupted Conduction System

Author(s):  
Elena Cocherova
1989 ◽  
Vol 256 (2) ◽  
Author(s):  
M. Cantin ◽  
G. Thibault ◽  
H. Haile-Meskel ◽  
J. Ding ◽  
R.W. Milne ◽  
...  

2020 ◽  
Vol 5 (04) ◽  
pp. 368-372
Author(s):  
Seema Kale

AbstractVarying kinds of AV blocks can occur in the setting of myocardial ischaemia or due to degeneration of conduction system. Wenckebach AV block can present with typical Wenckebach periodicity or atypical periodicity. A variant of atypical Wenckebach periodicity may present like Mobitz II AV block. This is called Pseudo Mobitz II AV block. As we are aware that Mobitz II AV block is more dangerous and can suddenly convert into complete heart block, it is essential that we should try to differentiate between Mobitz and Pseudo Mobitz II blocks. Infact atypical Wenckebach cycles are quite common at both AV node and his Purkinje system.


HNO ◽  
2021 ◽  
Author(s):  
I. Seiwerth ◽  
S. Schilde ◽  
C. Wenzel ◽  
T. Rahne ◽  
S. K. Plontke

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sang-Hoon Seol ◽  
Ki-Hun Kim ◽  
Jino Park ◽  
Yeo-Jeong Song ◽  
Dong-Kie Kim ◽  
...  

AbstractHypertrophic cardiomyopathy (HCM) is associated with an increased incidence of Wolff–Parkinson–White (WPW) syndrome and atrial fibrillation. However, a delta-like wide QRS can be observed in the hypertrophied myocardium. When considering the rarity of the paraseptal bypass tract (BT), the normal QRS axis suggests a higher possibility of HCM origin. Otherwise, there is no known electrocardiographic clue indicating a wide QRS differentiation between HCM and WPW syndrome. Moreover, the atriofascicular, nodofascicular/ventricular or fasciculoventricular BT should be differentiated. In this case, atrioventricular conduction system incidental injury revealed a wide QRS origin from the HCM, but this method should be avoided except in some selected cases.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Charles D. Cohen ◽  
Miles J. De Blasio ◽  
Man K. S. Lee ◽  
Gabriella E. Farrugia ◽  
Darnel Prakoso ◽  
...  

Abstract Background Diabetes is associated with a significantly elevated risk of cardiovascular disease and its specific pathophysiology remains unclear. Recent studies have changed our understanding of cardiac cellularity, with cellular changes accompanying diabetes yet to be examined in detail. This study aims to characterise the changes in the cardiac cellular landscape in murine diabetes to identify potential cellular protagonists in the diabetic heart. Methods Diabetes was induced in male FVB/N mice by low-dose streptozotocin and a high-fat diet for 26-weeks. Cardiac function was measured by echocardiography at endpoint. Flow cytometry was performed on cardiac ventricles as well as blood, spleen, and bone-marrow at endpoint from non-diabetic and diabetic mice. To validate flow cytometry results, immunofluorescence staining was conducted on left-ventricles of age-matched mice. Results Mice with diabetes exhibited hyperglycaemia and impaired glucose tolerance at endpoint. Echocardiography revealed reduced E:A and e’:a’ ratios in diabetic mice indicating diastolic dysfunction. Systolic function was not different between the experimental groups. Detailed examination of cardiac cellularity found resident mesenchymal cells (RMCs) were elevated as a result of diabetes, due to a marked increase in cardiac fibroblasts, while smooth muscle cells were reduced in proportion. Moreover, we found increased levels of Ly6Chi monocytes in both the heart and in the blood. Consistent with this, the proportion of bone-marrow haematopoietic stem cells were increased in diabetic mice. Conclusions Murine diabetes results in distinct changes in cardiac cellularity. These changes—in particular increased levels of fibroblasts—offer a framework for understanding how cardiac cellularity changes in diabetes. The results also point to new cellular mechanisms in this context, which may further aid in development of pharmacotherapies to allay the progression of cardiomyopathy associated with diabetes.


Sign in / Sign up

Export Citation Format

Share Document