Image Information Assistance Neural Network for VideoPose3D-based Monocular 3D Pose Estimation

Author(s):  
Hao Wang ◽  
Dingli Luo ◽  
Takeshi Ikenaga
2019 ◽  
Vol 9 (12) ◽  
pp. 2478 ◽  
Author(s):  
Jui-Yuan Su ◽  
Shyi-Chyi Cheng ◽  
Chin-Chun Chang ◽  
Jing-Ming Chen

This paper presents a model-based approach for 3D pose estimation of a single RGB image to keep the 3D scene model up-to-date using a low-cost camera. A prelearned image model of the target scene is first reconstructed using a training RGB-D video. Next, the model is analyzed using the proposed multiple principal analysis to label the viewpoint class of each training RGB image and construct a training dataset for training a deep learning viewpoint classification neural network (DVCNN). For all training images in a viewpoint class, the DVCNN estimates their membership probabilities and defines the template of the class as the one of the highest probability. To achieve the goal of scene reconstruction in a 3D space using a camera, using the information of templates, a pose estimation algorithm follows to estimate the pose parameters and depth map of a single RGB image captured by navigating the camera to a specific viewpoint. Obviously, the pose estimation algorithm is the key to success for updating the status of the 3D scene. To compare with conventional pose estimation algorithms which use sparse features for pose estimation, our approach enhances the quality of reconstructing the 3D scene point cloud using the template-to-frame registration. Finally, we verify the ability of the established reconstruction system on publicly available benchmark datasets and compare it with the state-of-the-art pose estimation algorithms. The results indicate that our approach outperforms the compared methods in terms of the accuracy of pose estimation.


Author(s):  
Shengyuan Liu ◽  
Pei Lv ◽  
Yuzhen Zhang ◽  
Jie Fu ◽  
Junjin Cheng ◽  
...  

This paper proposes a novel Semi-Dynamic Hypergraph Neural Network (SD-HNN) to estimate 3D human pose from a single image. SD-HNN adopts hypergraph to represent the human body to effectively exploit the kinematic constrains among adjacent and non-adjacent joints. Specifically, a pose hypergraph in SD-HNN has two components. One is a static hypergraph constructed according to the conventional tree body structure. The other is the semi-dynamic hypergraph representing the dynamic kinematic constrains among different joints. These two hypergraphs are combined together to be trained in an end-to-end fashion. Unlike traditional Graph Convolutional Networks (GCNs) that are based on a fixed tree structure, the SD-HNN can deal with ambiguity in human pose estimation. Experimental results demonstrate that the proposed method achieves state-of-the-art performance both on the Human3.6M and MPI-INF-3DHP datasets.


Sign in / Sign up

Export Citation Format

Share Document