Study of photovoltaic cell degradation under rapid light variation

Author(s):  
Petru Adrian COTFAS ◽  
Daniel Tudor COTFAS ◽  
Sergiu SPATARU
1979 ◽  
Vol 46 ◽  
pp. 371-384 ◽  
Author(s):  
J.B. Hearnshaw

RSCVn stars are fully detached binary stars which show intrinsic small amplitude (up to 0.3 amplitude peak-to-peak) light variations, as well as, in most of the known cases, eclipses. The spectra are F to G, IV to V for the hotter component and usually KOIV for the cooler. They are also characterised by abnormally strong H and K emission from the cooler star, or, occasionally, from both components. The orbital and light curve periods are in the range 1 day to 2 weeks. An interesting feature is the migration of the light variations to earlier orbital phase, as the light variation period is shorter than the orbital period by a few parts in 10+4to a few parts in 10+3.


Author(s):  
Prince Gupta ◽  
Yeonhong Kim ◽  
Jonghyeok Im ◽  
Gumin Kang ◽  
Augustine M. Urbas ◽  
...  

2021 ◽  
Vol 11 (15) ◽  
pp. 6862
Author(s):  
Hongzhe Wen ◽  
Xuan Luo

Perovskites have recently attracted interest in the field of solar energy due to their excellent photovoltaic properties. We herein present a new approach to the composition of lead free perovskites via mixing of halide and oxide perovskites that share the cubic ABX3 structure. Using first-principles calculations through Density Functional Theory, we systematically investigated the atomic and electronic structures of mixed perovskite compounds composed of four cubic ABX3 perovskites. Our result shows that the B and X atoms play important roles in their band structure. On the other hand, their valence bands contributed by O-2p, Rh-4p, and Ti-3p orbitals, and their electronic properties were determined by Rh-O and Ti-O bonds. With new understandings of the electronic properties of cubic halide or oxide perovskites, we lastly combined the cubic perovskites in various configurations to improve stability and tune the bandgap to values desirable for photovoltaic cell applications. Our investigations suggest that the mixed perovskite compound Cs2Sn2Cl3I3Sr2TiRhO6 produced a bandgap of 1.2 eV, which falls into the ideal range of 1.0 to 1.7 eV, indicating high photo-conversion efficiency and showing promise towards solar energy applications.


Sign in / Sign up

Export Citation Format

Share Document