RSCVn Stars in the Southern Hemisphere

1979 ◽  
Vol 46 ◽  
pp. 371-384 ◽  
Author(s):  
J.B. Hearnshaw

RSCVn stars are fully detached binary stars which show intrinsic small amplitude (up to 0.3 amplitude peak-to-peak) light variations, as well as, in most of the known cases, eclipses. The spectra are F to G, IV to V for the hotter component and usually KOIV for the cooler. They are also characterised by abnormally strong H and K emission from the cooler star, or, occasionally, from both components. The orbital and light curve periods are in the range 1 day to 2 weeks. An interesting feature is the migration of the light variations to earlier orbital phase, as the light variation period is shorter than the orbital period by a few parts in 10+4to a few parts in 10+3.

2019 ◽  
Vol 491 (4) ◽  
pp. 5980-5990
Author(s):  
Barış Hoyman ◽  
Ömür Çakırlı ◽  
Orkun Özdarcan

ABSTRACT We employ optical spectroscopy and Kepler photometry to derive the physical properties and pulsational characteristics of the detached system KIC 2557430. We find that the system is formed by F-type components. Combining results from the analysis of spectroscopic data and Kepler photometry, we calculate masses and radii of the primary and the secondary components as M1 = 1.69 ± 0.03 M⊙, M2 = 1.35 ± 0.02 M⊙ and R1 = 1.88 ± 0.02 R⊙, R2 = 1.23 ± 0.03 R⊙, respectively. Position of the primary component in the HR diagram is in the region of γ Doradus-type pulsators and the residuals from light curve modelling exhibit additional light variation with a dominant period of ∼0.5 d−1. These are clear evidence of the γ Doradus-type pulsations on the primary component. Focusing on the γ Dor primaries, with their currently known numbers in eclipsing binaries to compare against, we probe the role binary stars might play, to understand the nature of γ Dor-type pulsations.


1979 ◽  
Vol 46 ◽  
pp. 385
Author(s):  
M.B.K. Sarma ◽  
K.D. Abhankar

AbstractThe Algol-type eclipsing binary WX Eridani was observed on 21 nights on the 48-inch telescope of the Japal-Rangapur Observatory during 1973-75 in B and V colours. An improved period of P = 0.82327038 days was obtained from the analysis of the times of five primary minima. An absorption feature between phase angles 50-80, 100-130, 230-260 and 280-310 was present in the light curves. The analysis of the light curves indicated the eclipses to be grazing with primary to be transit and secondary, an occultation. Elements derived from the solution of the light curve using Russel-Merrill method are given. From comparison of the fractional radii with Roche lobes, it is concluded that none of the components have filled their respective lobes but the primary star seems to be evolving. The spectral type of the primary component was estimated to be F3 and is found to be pulsating with two periods equal to one-fifth and one-sixth of the orbital period.


2019 ◽  
Vol 15 (S356) ◽  
pp. 407-407
Author(s):  
Abduselam Mohammed

AbstractAs a pulsating star moves in its binary orbit, the path length of the light between us and the star varies, leading to the periodic variation in the arrival time of the signal from the star to us (earth). With the consideration of pulsators light arrival time delay effects several new methods which allows using Kepler photometric data (light curves) alone to find binary stars have been recently developed. Among these modern techniques we used binarogram method and we identified that several δSct pulsating stars have companions. The application of these method on detecting long periods(i.e. longer than about 50 d) δSct pulsating stars is not new, but the uniqueness of this study is we verified that it is also applicable to detect and determine the orbital elements of short periods (i.e short orbital period) δSct pulsating stars. With this investigation, we identified the possible way to overcome effects of fictious peaks, even, on the maximum peaks helpful to verify weather the star has companion or not depend up on the existence of the time-delay. Then, we applied the technique on known binary stars and their orbital elements are previously published. Finally, we identified some new short orbital period δSct pulsating stars and obtained their orbital frequency and period with the same procedures. Because of with our attempts we succeeded and verified the applicability of the method (the Binarogram method) on these stars (i.e short orbital period) for the first time, we expect that our present study will play a great role for similar study and to improve our binary statistics.


2001 ◽  
Vol 121 (3) ◽  
pp. 1583-1596 ◽  
Author(s):  
Elliott Horch ◽  
Zoran Ninkov ◽  
Otto G. Franz

2002 ◽  
Vol 187 ◽  
pp. 167-172
Author(s):  
T.R. Vaccaro ◽  
R.E. Wilson

AbstractThe red dwarf + white dwarf eclipsing binary V471 Tau shows a variable Hα feature that varies from absorption during eclipse to maximum emission during white dwarf transit. In 1998 we obtained simultaneous BVRI photometry and Hα spectroscopy, with thorough phase coverage of the 12.5 hour orbital period. A binary star model was used with our light curve, radial velocity, and Hα data to refine stellar and orbital parameters. Combined absorption-emission profiles were generated by the model and fit to the observations, yielding a red star radius of 0.94R⊙. Orbital inclination 78° is required with this size and other known parameters. The model includes three spots 1,000 K cooler than the surrounding photosphere. The variable Hα profile was modeled as a chromospheric fluorescing region (essentially on the surface of the red star) centered at the substellar point. Additional emission seen outside our modeled profiles may be large co-rotating prominences that complicate the picture.


2019 ◽  
Vol 489 (1) ◽  
pp. 1451-1462
Author(s):  
Metin Altan ◽  
Taichi Kato ◽  
Ryoko Ishioka ◽  
Linda Schmidtobreick ◽  
Tolga Güver ◽  
...  

Abstract The cataclysmic variable SDSS J214354.59+124457.8 (hereafter SDSS J214354) was observed photometrically on sixty one nights between 2012 July 28 and 2019 May 26. The long term variation of this object shows changes between two phases; a dwarf nova type and a novalike. This implies that the object belongs to the group of Z Cam type stars. The timing analysis of the light curve reveals a periodic signal at 0.13902(5) d, which we identify as the superhump period. However, the fractional superhump excess of 10 per cent longer than the orbital period is exceptionally large. We obtained a mass ratio of ∼0.4, which is above the accepted upper limit of q = 0.33 for the formation of superhumps. We suggest that the object contains a secondary with an evolved core. With an orbital period of 0.126 d, SDSS J214354 is situated at the upper border of the period gap. The long term light curve of SDSS J214354 is similar to those of Z Cam type stars which are characterized by recurring standstills, followed by short intervals with DN type outbursts. Therefore, we conclude that SDSS J214354 is a new member of the Z Cam type stars.


1989 ◽  
Vol 107 ◽  
pp. 336-336
Author(s):  
Sean Carroll ◽  
Edward Guinan ◽  
George McCook ◽  
Robert Donahue

The eclipsing binary Epsilon Aurigae consists of an F0 supergiant and a cool, mysterious eclipsing companion with an orbital period of 27.1 years. The light curve of this system reveals two sources of variability: the eclipses themselves and the intrinsic variation of the supergiant. Multifilter photoelectric observations were made with the 38 cm reflector at the Villanova University Observatory. These data were analyzed along with other sources to reveal the nature of the components of the Epsilon Aurigae system. The system undergoes low-amplitude semi-regular light variations with a characteristic period of 110 days and perhaps a longer period of 500-600 days. The proximity of Epsilon Aur to the Cepheid instability strip on the H-R diagram suggests that the pulsation mechanism for this star may be similar to that of Cepheids.


2018 ◽  
Vol 14 (S346) ◽  
pp. 187-192
Author(s):  
S. Carpano ◽  
F. Haberl ◽  
P. Crowther ◽  
A. Pollock

Abstract. NGC 300 X-1 and IC 10 X-1 are currently the only two robust extragalactic candidates for being Wolf-Rayet/black hole X-ray binaries, the Galactic analogue being Cyg X-3. These systems are believed to be a late product of high-mass X-ray binary evolution and direct progenitors of black hole mergers. From the analysis of Swift data, the orbital period of NGC 300 X-1 was found to be 32.8 h. We here merge the full set of existing data of NGC 300 X-1, using XMM-Newton, Chandra and Swift observations to derive a more precise value of the orbital period of 32.7932 ± 0.0029 h above a confidence level of 99.99%. This allows us to phase connect the X-ray light curve of the source with radial velocity measurements of He II lines performed in 2010. We show that, as for IC 10 X-1 and Cyg X-3, the X-ray eclipse corresponds to maximum of the blueshift of the He II lines, instead of the expected zero velocity. This indicates that for NGC 300 X-1 as well, the wind of the WR star is completely ionised by the black hole radiation and that the emission lines come from the region of the WR star that is in the shadow. We also present for the first time the light curve of two recent very long XMM-Newton observations of the source, performed on the 16th to 20th of December 2016.


2004 ◽  
Vol 194 ◽  
pp. 224-224
Author(s):  
Š. Parimucha ◽  
M. Vańko

Analysis of the optical and infrared photometry together with UV spectroscopy led to discovery of the 15-years periodicity in the symbiotic system V1016 Cyg. This period could be interpreted as a orbital period in the binary system consisting of the Mira variable and the hot white dwarf.We have analyzed long-term optical photographic and UBV photoelectric photometry of V1016 Cyg. Collected observations cover pre- and post-outburst stages of the system. The light, curve suggests four stages of activity: the pre-out burst flare in 1949, the main nova-like outburst in 1904, and two post-outbursts, decreasing-amplitude flares in 1980 and 1994, respectively. Activity episodes affecting the system repeat with an interval of ~ 15 years. The ephemeris for the activity maxima is (see Parimucha et al., 2000).


Sign in / Sign up

Export Citation Format

Share Document