scholarly journals Sputtering rate of lead, tin and germanium tellurides with low energy argon ions

2021 ◽  
Vol 11 (1) ◽  
pp. 36-41
Author(s):  
Dmytro Zayachuk ◽  
◽  
Vasyl Slynko ◽  
Attila Csík ◽  
◽  
...  

Sputtering of PbTe, SnTe, and GeTe crystal samples by low-energy Ar+ ions are investigated, and the sputtering rate vsp of the studied compounds, as well as its dependence on both the composition of crystal matrix and the sputtering energy are determined. It is found that under the same conditions the sputtering rate in the sequence of GeTe-SnTe-PbTe telluride compounds increases when their average atomic weight increases. This phenomenon is explained by changes in the surface binding energy of metal atoms in lead, tin and germanium tellurides. It is shown that for all compounds the sputtering rate also increases with the increase in the sputtering energy. In the energy range from 160 to 550 eV,this increase is almost linear. The coefficients of change in the sputtering rate with energy dvsp/dE are calculated. The surface density of Ar+ ion-induced structures and the relative area of the sputtered surface covered by these structures are determined for the natural lateral surfaces of a PbTe crystal grown from melt by the Bridgman method as a function of sputtering energy. It is shown that both studied parameters decrease exponentially with increasing the sputtering energy.

2021 ◽  
Author(s):  
Yunchang Liang ◽  
Karla Banjac ◽  
Kévin Martin ◽  
Nicolas Zigon ◽  
Seunghwa Lee ◽  
...  

A sustainable future requires highly efficient energy conversion and storage processes, where electrocatalysis plays a crucial role. The activity of an electrocatalyst is governed by the binding energy towards the reaction intermediates, while the scaling relationships prevent the improvement of a catalytic system over its volcano-plot limits. To overcome these limitations, unconventional methods that are not fully determined by the surface binding energy can be helpful. Here, we use organic chiral molecules, i.e., hetero-helicenes, to boost the oxygen evolution reaction (OER) by ca. 131.5 % (at the potential of 1.65 V vs. RHE) at state-of-the-art 2D catalysts via a spin-polarization mechanism. Our results show that chiral molecule-functionalization is able to increase the OER activity of catalysts beyond the volcano limits. A guideline for optimizing the catalytic activity via chiral molecular functionalization of hybrid 2D electrodes is given.


2020 ◽  
Vol 8 (11) ◽  
pp. 5671-5678 ◽  
Author(s):  
Xinxin Zhao ◽  
Fengjiao Chen ◽  
Junqing Liu ◽  
Mingren Cheng ◽  
Hai Su ◽  
...  

A SnO2-coated carbon fiber mat is fabricated and used to guide uniform K nucleation/deposition for dendrite free K metal anodes.


2021 ◽  
Author(s):  
Yunchang Liang ◽  
Karla Banjac ◽  
Kévin Martin ◽  
Nicolas Zigon ◽  
Seunghwa Lee ◽  
...  

Abstract A sustainable future requires highly efficient energy conversion and storage processes, where electrocatalysis plays a crucial role. The activity of an electrocatalyst is governed by the binding energy towards the reaction intermediates, while the scaling relationships prevent the improvement of a catalytic system over its volcano-plot limits. To overcome these limitations, unconventional methods that are not fully determined by the surface binding energy can be helpful. Here, we use organic chiral molecules, i.e., hetero-helicenes, to boost the oxygen evolution reaction (OER) by ca. 131.5% (at the potential of 1.65 V vs. RHE) at state-of-the-art 2D catalysts via a spin-polarization mechanism. Our results show that chiral molecule-functionalization is able to increase the OER activity of catalysts beyond the volcano limits. A guideline for optimizing the catalytic activity via chiral molecular functionalization of hybrid 2D electrodes is given.


2019 ◽  
Vol 1299 ◽  
pp. 012022 ◽  
Author(s):  
Akinwumi Akinpelu ◽  
Oluwole E. Oyewande ◽  
Adaeze ◽  
Arijaje T. Emuobor ◽  
C Olawole ◽  
...  

2021 ◽  
Author(s):  
Liam Morrissey ◽  
Orenthal Tucker ◽  
Rosemary Killen ◽  
Dennis Herschback ◽  
Daniel W. Savin

1981 ◽  
Vol 52 (3) ◽  
pp. 2123-2128 ◽  
Author(s):  
W. Gudat ◽  
M. Campagna ◽  
R. Rosei ◽  
J. H. Weaver ◽  
W. Eberhardt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document