Speciation, Extinction, and the Distribution of Phylogenetic Diversity

Author(s):  
Marc W. Cadotte ◽  
T. Jonathan Davies

This chapter examines the use of phylogenetic methods to explain macroevolutionary trends in speciation, extinction, and the distribution of phylogenetic diversity across space and through time. The diversity of life is unevenly distributed across the globe. Species richness tends to be higher at lower latitudes and elevations, and the distribution of life forms also varies across space. For example, Foster's rule suggests that on islands small species evolve to become bigger, while large species evolve to become smaller. Equally, the distribution of evolutionary history shows large spatial variation, reflecting the histories of speciation, extinction, and dispersal. This chapter first considers how large, global phylogenies make it possible to map the distribution of phylogenetic diversity and develop a conservation strategy to maximize coverage of the tree of life. It then discusses the variation in diversification across spatiotemporal gradients and shows that phylogenetic diversity covaries significantly with taxonomic richness.

2018 ◽  
Vol 115 (15) ◽  
pp. E3454-E3462 ◽  
Author(s):  
A. Justin Nowakowski ◽  
Luke O. Frishkoff ◽  
Michelle E. Thompson ◽  
Tatiana M. Smith ◽  
Brian D. Todd

Habitat conversion is driving biodiversity loss and restructuring species assemblages across the globe. Responses to habitat conversion vary widely, however, and little is known about the degree to which shared evolutionary history underlies changes in species richness and composition. We analyzed data from 48 studies, comprising 438 species on five continents, to understand how taxonomic and phylogenetic diversity of amphibian assemblages shifts in response to habitat conversion. We found that evolutionary history explains the majority of variation in species’ responses to habitat conversion, with specific clades scattered across the amphibian tree of life being favored by human land uses. Habitat conversion led to an average loss of 139 million years of amphibian evolutionary history within assemblages, high species and lineage turnover at landscape scales, and phylogenetic homogenization at the global scale (despite minimal taxonomic homogenization). Lineage turnover across habitats was greatest in lowland tropical regions where large species pools and stable climates have perhaps given rise to many microclimatically specialized species. Together, our results indicate that strong phylogenetic clustering of species’ responses to habitat conversion mediates nonrandom structuring of local assemblages and loss of global phylogenetic diversity. In an age of rapid global change, identifying clades that are most sensitive to habitat conversion will help prioritize use of limited conservation resources.


PeerJ ◽  
2014 ◽  
Vol 2 ◽  
pp. e288 ◽  
Author(s):  
Mark A. Genung ◽  
Jennifer A. Schweitzer ◽  
Joseph K. Bailey

2010 ◽  
Vol 13 (1) ◽  
pp. 96-105 ◽  
Author(s):  
Marc W. Cadotte ◽  
T. Jonathan Davies ◽  
James Regetz ◽  
Steven W. Kembel ◽  
Elsa Cleland ◽  
...  

2020 ◽  
Author(s):  
Alke Voskamp ◽  
Christian Hof ◽  
Matthias F. Biber ◽  
Thomas Hickler ◽  
Aidin Niamir ◽  
...  

AbstractOngoing climate change is a major threat to biodiversity and impacts on species distributions and abundances are already evident. Heterogenous responses of species due to varying abiotic tolerances and dispersal abilities have the potential to further amplify or ameliorate these impacts through changes in species assemblages. Here we investigate the impacts of climate change on terrestrial bird distributions and, subsequently, on species richness as well as on different aspects of phylogenetic diversity of species assemblages across the globe. We go beyond previous work by disentangling the potential impacts on assemblage phylogenetic diversity of species gains vs. losses under climate change and compare the projected impacts to randomized assemblage changes.We show that climate change might not only affect species numbers and composition of global species assemblages but could also have profound impacts on assemblage phylogenetic diversity, which, across extensive areas, differ significantly from random changes. Both the projected impacts on phylogenetic diversity and on phylogenetic structure vary greatly across the globe. Projected increases in the evolutionary history contained within species assemblages, associated with either increasing phylogenetic diversification or clustering, are most frequent at high northern latitudes. By contrast, projected declines in evolutionary history, associated with increasing phylogenetic over-dispersion or homogenisation, are projected across all continents.The projected widespread changes in the phylogenetic structure of species assemblages show that changes in species richness do not fully reflect the potential threat from climate change to ecosystems. Our results indicate that the most severe changes to the phylogenetic diversity and structure of species assemblages are likely to be caused by species range shifts rather than range reductions and extinctions. Our findings highlight the importance of considering diverse measures in climate impact assessments and the value of integrating species-specific responses into assessments of entire community changes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruomeng Wang ◽  
Nianpeng He ◽  
Shenggong Li ◽  
Li Xu ◽  
Mingxu Li

AbstractLeaf water content (LWC) has important physiological and ecological significance for plant growth. However, it is still unclear how LWC varies over large spatial scale and with plant adaptation strategies. Here, we measured the LWC of 1365 grassland plants, along three comparative precipitation transects from meadow to desert on the Mongolia Plateau (MP), Loess Plateau, and Tibetan Plateau, respectively, to explore its spatial variation and the underlying mechanisms that determine this variation. The LWC data were normally distributed with an average value of 0.66 g g−1. LWC was not significantly different among the three plateaus, but it differed significantly among different plant life forms. Spatially, LWC in the three plateaus all decreased and then increased from meadow to desert grassland along a precipitation gradient. Unexpectedly, climate and genetic evolution only explained a small proportion of the spatial variation of LWC in all plateaus, and LWC was only weakly correlated with precipitation in the water-limited MP. Overall, the lasso variation in LWC with precipitation in all plateaus represented an underlying trade-off between structural investment and water income in plants, for better survival in various environments. In brief, plants should invest less to thrive in a humid environment (meadow), increase more investment to keep a relatively stable LWC in a drying environment, and have high investment to hold higher LWC in a dry environment (desert). Combined, these results indicate that LWC should be an important variable in future studies of large-scale trait variations.


2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Macielle Macedo Coelho ◽  
André Márcio Amorim

The aim of this study is to survey the angiosperms of two montane forest remnants in the southern Bahia, Brazil: Corcovado (SCO) and Pedra Lascada (SPL). Both fragments are located in the municipality of Almadina and Barro Preto, respectively, and are 18 km distant from each other. We sampled 899 species of angiosperms distributed in 437 genera and 116 families. The SCO was the richest area with 678 species, distributed in 367 genera and 100 families. SPL showed 466 species in 269 genera and 88 families. The percentage of species identified was 85.8% and of this total, 37.7% are endemic to the Atlantic Forest, 11.2% are endemic to southern Bahia and northern Espírito Santo and 7% are disjunct between the Atlantic Forest and Amazon. The remaining percentages (44.3%) were of species widely distributed. The richest families in the two areas were Orchidaceae (10%), Rubiaceae (7%), Bromeliaceae (5.5%), Melastomataceae (4.2%) and Poaceae (4%). The richest genera were Psychotria (2%),Piper (1.8%), Ocotea (1.6%),Vriesea (1.5%) and Peperomia (1.4%). More than half of the recorded species showed non-arboreal habit, regarding life forms documented. That comes against the assertion that many authors in the tropical forests, where species richness in angiosperms is expected for non-woody species, especially in montane forests. Twelve species have been identified as new, but seven others already described from collections previously obtained in these two areas. Orchidaceae, Rubiaceae, Poaceae and Bromeliaceae showed significant richness in this study these families are commonly reported as the richest in other inventories in the Atlantic Forest in southern Bahia reinforcing their importance to the regional flora. The high levels of richness, endemism, and the growing numbers of new taxonomic discoveries from the SPL and SCO sites indicate the biological importance of these two forest remnants. The implementation of parks or other protected environmental reserves would be essential to the conservation of its species.


Sign in / Sign up

Export Citation Format

Share Document