scholarly journals Phylogenetic homogenization of amphibian assemblages in human-altered habitats across the globe

2018 ◽  
Vol 115 (15) ◽  
pp. E3454-E3462 ◽  
Author(s):  
A. Justin Nowakowski ◽  
Luke O. Frishkoff ◽  
Michelle E. Thompson ◽  
Tatiana M. Smith ◽  
Brian D. Todd

Habitat conversion is driving biodiversity loss and restructuring species assemblages across the globe. Responses to habitat conversion vary widely, however, and little is known about the degree to which shared evolutionary history underlies changes in species richness and composition. We analyzed data from 48 studies, comprising 438 species on five continents, to understand how taxonomic and phylogenetic diversity of amphibian assemblages shifts in response to habitat conversion. We found that evolutionary history explains the majority of variation in species’ responses to habitat conversion, with specific clades scattered across the amphibian tree of life being favored by human land uses. Habitat conversion led to an average loss of 139 million years of amphibian evolutionary history within assemblages, high species and lineage turnover at landscape scales, and phylogenetic homogenization at the global scale (despite minimal taxonomic homogenization). Lineage turnover across habitats was greatest in lowland tropical regions where large species pools and stable climates have perhaps given rise to many microclimatically specialized species. Together, our results indicate that strong phylogenetic clustering of species’ responses to habitat conversion mediates nonrandom structuring of local assemblages and loss of global phylogenetic diversity. In an age of rapid global change, identifying clades that are most sensitive to habitat conversion will help prioritize use of limited conservation resources.

Author(s):  
Marc W. Cadotte ◽  
T. Jonathan Davies

This chapter examines the use of phylogenetic methods to explain macroevolutionary trends in speciation, extinction, and the distribution of phylogenetic diversity across space and through time. The diversity of life is unevenly distributed across the globe. Species richness tends to be higher at lower latitudes and elevations, and the distribution of life forms also varies across space. For example, Foster's rule suggests that on islands small species evolve to become bigger, while large species evolve to become smaller. Equally, the distribution of evolutionary history shows large spatial variation, reflecting the histories of speciation, extinction, and dispersal. This chapter first considers how large, global phylogenies make it possible to map the distribution of phylogenetic diversity and develop a conservation strategy to maximize coverage of the tree of life. It then discusses the variation in diversification across spatiotemporal gradients and shows that phylogenetic diversity covaries significantly with taxonomic richness.


2018 ◽  
Vol 115 (44) ◽  
pp. 11262-11267 ◽  
Author(s):  
Matt Davis ◽  
Søren Faurby ◽  
Jens-Christian Svenning

The incipient sixth mass extinction that started in the Late Pleistocene has already erased over 300 mammal species and, with them, more than 2.5 billion y of unique evolutionary history. At the global scale, this lost phylogenetic diversity (PD) can only be restored with time as lineages evolve and create new evolutionary history. Given the increasing rate of extinctions however, can mammals evolve fast enough to recover their lost PD on a human time scale? We use a birth–death tree framework to show that even if extinction rates slow to preanthropogenic background levels, recovery of lost PD will likely take millions of years. These findings emphasize the severity of the potential sixth mass extinction and the need to avoid the loss of unique evolutionary history now.


2021 ◽  
Author(s):  
Rikki Gumbs ◽  
Abhishek Chaudhary ◽  
Barnabas H Daru ◽  
Daniel P Faith ◽  
Felix Forest ◽  
...  

Following our failure to fully achieve any of the 20 Aichi biodiversity targets, the future of biodiversity rests in the balance. The Convention on Biological Diversity's Post-2020 Global Biodiversity Framework (GBF) presents us with the opportunity to preserve Nature's Contributions to People (NCPs) for current and future generations through conserving biodiversity and averting extinction across the Tree of Life. Here we demonstrate that species extinctions can lead to unequal losses of biodiversity depending on their evolutionary history, and call attention to our need to conserve the Tree of Life to maintain its benefits. We highlight two indicators available for adoption in the post-2020 GBF to monitor our progress towards safeguarding the Tree of Life. The Phylogenetic Diversity indicator, adopted by IPBES, can be used to monitor biodiversity's capacity to maintain NCPs. The EDGE (Evolutionarily Distinct and Globally Endangered) Index monitors how well we are performing at averting the greatest losses across the Tree of Life by conserving the most distinctive species. By committing to safeguarding the Tree of Life post-2020, we can reduce biodiversity loss and preserve nature's contributions to humanity now and into the future.


Author(s):  
Karen J. Esler ◽  
Anna L. Jacobsen ◽  
R. Brandon Pratt

Mediterranean-type climate (MTC) regions are highlighted in several global analyses of conservation risk and priorities. These regions have undergone high levels of habitat conversion and yet of all terrestrial biomes they have the second lowest level of land protection. With transformation pressures set to continue (Chapter 8), planning for a sustainable conservation future in MTC regions is therefore essential. Conservation activities are represented by a variety of philosophies and motives, partially driven by the underlying differences in transformation drivers and sociopolitical contexts across MTC regions. These activities include investment in, and best-practice management of, protected areas (land sparing), an interdisciplinary focus on integrated management of production landscapes (land sharing; stewardship), as well as ecological restoration to increase habitat, improve connectivity, and provide a hedge against the impacts of future climate change. These responses need to be applied in a strategic, synergistic manner to minimize future biodiversity loss.


Author(s):  
Mark Vellend

This chapter highlights the scale dependence of biodiversity change over time and its consequences for arguments about the instrumental value of biodiversity. While biodiversity is in decline on a global scale, the temporal trends on regional and local scales include cases of biodiversity increase, no change, and decline. Environmental change, anthropogenic or otherwise, causes both local extirpation and colonization of species, and thus turnover in species composition, but not necessarily declines in biodiversity. In some situations, such as plants at the regional scale, human-mediated colonizations have greatly outnumbered extinctions, thus causing a marked increase in species richness. Since the potential influence of biodiversity on ecosystem function and services is mediated to a large degree by local or neighborhood species interactions, these results challenge the generality of the argument that biodiversity loss is putting at risk the ecosystem service benefits people receive from nature.


Botany ◽  
2020 ◽  
Vol 98 (9) ◽  
pp. 479-488
Author(s):  
Francisco E. Fontúrbel

Mistletoes are a group of flowering plants that have developed a parasitic lifeform through complex eco-evolutionary processes. Despite being considered a pest, mistletoes represent a keystone forest resource and are involved in complex plant–plant and plant–animal interactions. Their parasitic lifeform and specialized ecological interactions make mistletoes an ideal model with which to understand the effects of anthropogenic disturbances in a changing world. The accelerated growth of the human population has altered all ecosystems on Earth, leading to biodiversity loss. Land-use changes (involving habitat loss, fragmentation, degradation, and transformation processes) can alter the ecological scenario for mistletoe by altering hosts, mutualists, and nutrient cycling. Those changes may have large consequences at the community level, changing the spatial structure of mistletoes, as well as interaction effectiveness, facilitation process, interaction disruption, and novel interactions with invasive species, leading to non-analog communities in the long run. Furthermore, climate change effects operate on a global scale, enhancing the effects of land-use changes. As temperatures increase, many species would alter their distribution and phenology, potentially causing spatial and temporal mismatches. But more critical is the fact that water stress is likely to disrupt key ecological interactions. Thus, mistletoes can provide valuable insights for what we can expect in the future, as a result of human disturbances.


2013 ◽  
Author(s):  
Zachary Hajian-Forooshani ◽  
David Gonthier ◽  
Linda Marín ◽  
Aaron L Iverson ◽  
Ivette Perfecto

Agricultural intensification is implicated as a major driver of global biodiversity loss. Local management and landscape scale factors both influence biodiversity in agricultural systems, but there are relatively few studies to date looking at how local and landscape scales influence biodiversity in tropical agroecosystems. Understanding what drives the diversity of groups of organisms such as spiders is important from a pragmatic point of view because of the important biocontrol services they offer to agriculture. Spiders in coffee are somewhat enigmatic because of their positive or lack of response to agricultural intensification. In this study, we provide the first analysis, to our knowledge, of the arboreal spiders in the shade trees of coffee plantations. In the Soconusco region of Chiapas, Mexico we sampled across 38 sites on 9 coffee plantations. Tree and canopy connectedness were found to positively influence overall arboreal spider richness and abundance. We found that different functional groups of spiders are responding to different local and landscape factors, but overall elevation was most important variable influencing arboreal spider diversity. Our study has practical management applications that suggest having shade grown coffee offers more suitable habitat for arboreal spiders due to a variety of the characteristics of the shade trees. Our results which show consistently more diverse arboreal spider communities in lower elevations are important in light of looming global climate change. As the range of suitable elevations for coffee cultivation shrinks promoting arboreal spider diversity will be important in sustaining the viability of coffee.


2021 ◽  
Author(s):  
Justine Pichon ◽  
Emmanuel Riviere ◽  
Abhinna Behera ◽  
Jeremie Burgalat

<p>Water repartition in the stratosphere is a key compound in the atmospheric chemical and<br>radiative equilibrium. Since the 80’s, an increase of the water concentration in the<br>stratosphere has been observed.This presence in the stratosphere can be explained by the<br>slow ascent of air mass above convective clouds in tropical regions. The amount of water<br>vapor entering in the stratosphere depends on the coldest temperature and countered<br>during this slow ascent because it can lead to ice cristal formation that sediment and<br>dehydrate the air masses. But some other processes may contribute to the stratospheric<br>water budget, especially to explain the increase of water vapor. Stratospheric overshoots<br>phenomenon can take part in the stratospheric hydratation, by injecting directly water ice in<br>the stratosphere. Injected ice water, by sublimation, will hydrate stratosphere locally. The<br>local role of overshoots is better known but their contributions at the global scale steal need<br>to be quantified. In order to estimate this contribution, previous studies have used the 3D<br>simulation mesoscale model BRAMS to show overshoot impact in the upper Tropical<br>Tropopause Layer (TTL). These studies are the starting point of our study.</p><p>The aim of this paper is to present the new development inside BRAMS to nudge<br>stratospheric ice injection by overshoots. It uses an overshoot occurrence climatology from<br>MHS (Microwave Humidity Sounder) satellite measurement. Ice injection in the model is<br>made according to ice model categories previously shown to be present in the overshoot<br>plumes with ratios already diagnosed in previous studies. Ice injection is made between two<br>layers of TTL’s stratospheric part: between 380 and 385K and between 385 et 400K. Nudging<br>is triggered only if, in the grid mesh (20 x 20 km) where MHS has detected an overshoot,<br>BRAMS computes a cumulonimbus with a top above 13.5km. For the layer above 385 K<br>isentrope, a subgrid box of 2 km x 2 km is considered for the computation of ice injection.<br>Sensibility test of this nudging scheme will be presented in this presentation. </p>


2020 ◽  
Vol 29 (13) ◽  
pp. 3533-3550
Author(s):  
Gabriele Gheza ◽  
Silvia Assini ◽  
Chiara Lelli ◽  
Lorenzo Marini ◽  
Helmut Mayrhofer ◽  
...  

Abstract In dry habitats of European lowlands terricolous lichens and bryophytes are almost neglected in conservation practises, even if they may strongly contribute to biodiversity. This study aims at (a) testing the role of heathlands, acidic and calcareous dry grasslands for lichen and bryophyte diversity and conservation in lowland areas of northern Italy characterized by high human impact and habitat fragmentation; (b) detecting the effect of environmental drivers and vegetation dynamics on species richness and composition. Lichens, bryophytes, vascular plants, and environmental variables were recorded in 287 circular plots for 75 sites. Our results indicate that heathlands, acidic and calcareous dry grasslands host peculiar terricolous lichen and bryophyte communities that include several species of conservation concern. Thus, each habitat provides a complementary contribution to lichen and bryophyte diversity in continental lowland landscapes. Furthermore, in each habitat different factors drive species richness and composition with contrasting patterns between lichens and bryophytes. In terms of conservation, our results indicate that management of lowland dry habitats should act at both local and landscape scales. At local scale, vegetation dynamics should be controlled in order to avoid biodiversity loss due to vegetation dynamics and wood encroachment. At the landscape scale, patches of all the three habitats should be maintained to maximize regional diversity.


2003 ◽  
Vol 270 (1521) ◽  
pp. 1293-1300 ◽  
Author(s):  
K. J. Gaston ◽  
T. M. Blackburn ◽  
K. K. Goldewijk

Sign in / Sign up

Export Citation Format

Share Document