Combining Particle Filters with MH Samplers

Author(s):  
Edward P. Herbst ◽  
Frank Schorfheide

This chapter argues that in order to conduct Bayesian inference, the approximate likelihood function has to be embedded into a posterior sampler. It begins by combining the particle filtering methods with the MCMC methods, replacing the actual likelihood functions that appear in the formula for the acceptance probability in Algorithm 5 with particle filter approximations. The chapter refers to the resulting algorithm as PFMH algorithm. It is a special case of a larger class of algorithms called particle Markov chain Monte Carlo (PMCMC). The theoretical properties of PMCMC methods were established in Andrieu, Doucet, and Holenstein (2010). Applications of PFMH algorithms in other areas of econometrics are discussed in Flury and Shephard (2011).


2018 ◽  
Vol 24 (3) ◽  
pp. 203-214 ◽  
Author(s):  
Christian Müller ◽  
Fabian Weysser ◽  
Thomas Mrziglod ◽  
Andreas Schuppert

Abstract We consider the problem of sampling from high-dimensional likelihood functions with large amounts of non-identifiabilities via Markov-Chain Monte-Carlo algorithms. Non-identifiabilities are problematic for commonly used proposal densities, leading to a low effective sample size. To address this problem, we introduce a regularization method using an artificial prior, which restricts non-identifiable parts of the likelihood function. This enables us to sample the posterior using common MCMC methods more efficiently. We demonstrate this with three MCMC methods on a likelihood based on a complex, high-dimensional blood coagulation model and a single series of measurements. By using the approximation of the artificial prior for the non-identifiable directions, we obtain a sample quality criterion. Unlike other sample quality criteria, it is valid even for short chain lengths. We use the criterion to compare the following three MCMC variants: The Random Walk Metropolis Hastings, the Adaptive Metropolis Hastings and the Metropolis adjusted Langevin algorithm.



2009 ◽  
Vol 5 (H15) ◽  
pp. 318-318
Author(s):  
Julian King ◽  
Daniel Mortlock ◽  
John Webb ◽  
Michael Murphy

AbstractRecent attempts to constrain cosmological variation in the fine structure constant, α, using quasar absorption lines have yielded two statistical samples which initially appear to be inconsistent. One of these samples was subsequently demonstrated to not pass consistency tests; it appears that the optimisation algorithm used to fit the model to the spectra failed. Nevertheless, the results of the other hinge on the robustness of the spectral fitting program VPFIT, which has been tested through simulation but not through direct exploration of the likelihood function. We present the application of Markov Chain Monte Carlo (MCMC) methods to this problem, and demonstrate that VPFIT produces similar values and uncertainties for Δα/α, the fractional change in the fine structure constant, as our MCMC algorithm, and thus that VPFIT is reliable.



Genetics ◽  
1997 ◽  
Vol 146 (2) ◽  
pp. 735-743 ◽  
Author(s):  
Pekka Uimari ◽  
Ina Hoeschele

A Bayesian method for mapping linked quantitative trait loci (QTL) using multiple linked genetic markers is presented. Parameter estimation and hypothesis testing was implemented via Markov chain Monte Carlo (MCMC) algorithms. Parameters included were allele frequencies and substitution effects for two biallelic QTL, map positions of the QTL and markers, allele frequencies of the markers, and polygenic and residual variances. Missing data were polygenic effects and multi-locus marker-QTL genotypes. Three different MCMC schemes for testing the presence of a single or two linked QTL on the chromosome were compared. The first approach includes a model indicator variable representing two unlinked QTL affecting the trait, one linked and one unlinked QTL, or both QTL linked with the markers. The second approach incorporates an indicator variable for each QTL into the model for phenotype, allowing or not allowing for a substitution effect of a QTL on phenotype, and the third approach is based on model determination by reversible jump MCMC. Methods were evaluated empirically by analyzing simulated granddaughter designs. All methods identified correctly a second, linked QTL and did not reject the one-QTL model when there was only a single QTL and no additional or an unlinked QTL.



2017 ◽  
Vol 14 (18) ◽  
pp. 4295-4314 ◽  
Author(s):  
Dan Lu ◽  
Daniel Ricciuto ◽  
Anthony Walker ◽  
Cosmin Safta ◽  
William Munger

Abstract. Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results in a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. The result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.







Author(s):  
Vassilios Stathopoulos ◽  
Mark A. Girolami

Bayesian analysis for Markov jump processes (MJPs) is a non-trivial and challenging problem. Although exact inference is theoretically possible, it is computationally demanding, thus its applicability is limited to a small class of problems. In this paper, we describe the application of Riemann manifold Markov chain Monte Carlo (MCMC) methods using an approximation to the likelihood of the MJP that is valid when the system modelled is near its thermodynamic limit. The proposed approach is both statistically and computationally efficient whereas the convergence rate and mixing of the chains allow for fast MCMC inference. The methodology is evaluated using numerical simulations on two problems from chemical kinetics and one from systems biology.



2013 ◽  
Vol 9 (S298) ◽  
pp. 441-441
Author(s):  
Yihan Song ◽  
Ali Luo ◽  
Yongheng Zhao

AbstractStellar radial velocity is estimated by using template fitting and Markov Chain Monte Carlo(MCMC) methods. This method works on the LAMOST stellar spectra. The MCMC simulation generates a probability distribution of the RV. The RV error can also computed from distribution.



Sign in / Sign up

Export Citation Format

Share Document