scholarly journals Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods

2017 ◽  
Vol 14 (18) ◽  
pp. 4295-4314 ◽  
Author(s):  
Dan Lu ◽  
Daniel Ricciuto ◽  
Anthony Walker ◽  
Cosmin Safta ◽  
William Munger

Abstract. Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results in a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. The result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.


2017 ◽  
Author(s):  
Dan Lu ◽  
Daniel Ricciuto ◽  
Anthony Walker ◽  
Cosmin Safta ◽  
William Munger

Abstract. Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this study, a Differential Evolution Adaptive Metropolis (DREAM) algorithm was used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The DREAM is a multi-chain method and uses differential evolution technique for chain movement, allowing it to be efficiently applied to high-dimensional problems, and can reliably estimate heavy-tailed and multimodal distributions that are difficult for single-chain schemes using a Gaussian proposal distribution. The results were evaluated against the popular Adaptive Metropolis (AM) scheme. DREAM indicated that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identified one mode. The calibration of DREAM resulted in a better model fit and predictive performance compared to the AM. DREAM provides means for a good exploration of the posterior distributions of model parameters. It reduces the risk of false convergence to a local optimum and potentially improves the predictive performance of the calibrated model.



Stat ◽  
2015 ◽  
Vol 4 (1) ◽  
pp. 304-319 ◽  
Author(s):  
Alexey Miroshnikov ◽  
Zheng Wei ◽  
Erin Marie Conlon


2008 ◽  
Vol 10 (2) ◽  
pp. 153-162 ◽  
Author(s):  
B. G. Ruessink

When a numerical model is to be used as a practical tool, its parameters should preferably be stable and consistent, that is, possess a small uncertainty and be time-invariant. Using data and predictions of alongshore mean currents flowing on a beach as a case study, this paper illustrates how parameter stability and consistency can be assessed using Markov chain Monte Carlo. Within a single calibration run, Markov chain Monte Carlo estimates the parameter posterior probability density function, its mode being the best-fit parameter set. Parameter stability is investigated by stepwise adding new data to a calibration run, while consistency is examined by calibrating the model on different datasets of equal length. The results for the present case study indicate that various tidal cycles with strong (say, >0.5 m/s) currents are required to obtain stable parameter estimates, and that the best-fit model parameters and the underlying posterior distribution are strongly time-varying. This inconsistent parameter behavior may reflect unresolved variability of the processes represented by the parameters, or may represent compensational behavior for temporal violations in specific model assumptions.



2015 ◽  
Vol 2 (3) ◽  
pp. 939-968
Author(s):  
S. Nakano ◽  
K. Suzuki ◽  
K. Kawamura ◽  
F. Parrenin ◽  
T. Higuchi

Abstract. A technique for estimating the age–depth relationship in an ice core and evaluating its uncertainty is presented. The age–depth relationship is mainly determined by the accumulation of snow at the site of the ice core and the thinning process due to the horizontal stretching and vertical compression of ice layers. However, since neither the accumulation process nor the thinning process are fully understood, it is essential to incorporate observational information into a model that describes the accumulation and thinning processes. In the proposed technique, the age as a function of depth is estimated from age markers and δ18O data. The estimation is achieved using the particle Markov chain Monte Carlo (PMCMC) method, in which the sequential Monte Carlo (SMC) method is combined with the Markov chain Monte Carlo method. In this hybrid method, the posterior distributions for the parameters in the models for the accumulation and thinning processes are computed using the Metropolis method, in which the likelihood is obtained with the SMC method. Meanwhile, the posterior distribution for the age as a function of depth is obtained by collecting the samples generated by the SMC method with Metropolis iterations. The use of this PMCMC method enables us to estimate the age–depth relationship without assuming either linearity or Gaussianity. The performance of the proposed technique is demonstrated by applying it to ice core data from Dome Fuji in Antarctica.



2002 ◽  
Vol 6 (5) ◽  
pp. 883-898 ◽  
Author(s):  
K. Engeland ◽  
L. Gottschalk

Abstract. This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC) analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1) process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis



Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. R1003-R1020 ◽  
Author(s):  
Georgia K. Stuart ◽  
Susan E. Minkoff ◽  
Felipe Pereira

Bayesian methods for full-waveform inversion allow quantification of uncertainty in the solution, including determination of interval estimates and posterior distributions of the model unknowns. Markov chain Monte Carlo (MCMC) methods produce posterior distributions subject to fewer assumptions, such as normality, than deterministic Bayesian methods. However, MCMC is computationally a very expensive process that requires repeated solution of the wave equation for different velocity samples. Ultimately, a large proportion of these samples (often 40%–90%) is rejected. We have evaluated a two-stage MCMC algorithm that uses a coarse-grid filter to quickly reject unacceptable velocity proposals, thereby reducing the computational expense of solving the velocity inversion problem and quantifying uncertainty. Our filter stage uses operator upscaling, which provides near-perfect speedup in parallel with essentially no communication between processes and produces data that are highly correlated with those obtained from the full fine-grid solution. Four numerical experiments demonstrate the efficiency and accuracy of the method. The two-stage MCMC algorithm produce the same results (i.e., posterior distributions and uncertainty information, such as medians and highest posterior density intervals) as the Metropolis-Hastings MCMC. Thus, no information needed for uncertainty quantification is compromised when replacing the one-stage MCMC with the more computationally efficient two-stage MCMC. In four representative experiments, the two-stage method reduces the time spent on rejected models by one-third to one-half, which is important because most of models tried during the course of the MCMC algorithm are rejected. Furthermore, the two-stage MCMC algorithm substantially reduced the overall time-per-trial by as much as 40%, while increasing the acceptance rate from 9% to 90%.



Author(s):  
Edward P. Herbst ◽  
Frank Schorfheide

This chapter argues that in order to conduct Bayesian inference, the approximate likelihood function has to be embedded into a posterior sampler. It begins by combining the particle filtering methods with the MCMC methods, replacing the actual likelihood functions that appear in the formula for the acceptance probability in Algorithm 5 with particle filter approximations. The chapter refers to the resulting algorithm as PFMH algorithm. It is a special case of a larger class of algorithms called particle Markov chain Monte Carlo (PMCMC). The theoretical properties of PMCMC methods were established in Andrieu, Doucet, and Holenstein (2010). Applications of PFMH algorithms in other areas of econometrics are discussed in Flury and Shephard (2011).



Sign in / Sign up

Export Citation Format

Share Document