scholarly journals Inverse analysis method for mathematical modeling of hydrodynamic ballast in a drilling rig

2021 ◽  
Vol 21 (1) ◽  
pp. 43-54
Author(s):  
I. R. Antypas ◽  
A. G. Dyachenko ◽  
B. I. Saed

Introduction. When organizing drilling operations, one of the major problems is the accuracy and smoothness of lowering bundles of pipes into the shaft of the drilling rig. This depends on many factors, including the operation of the hydraulic brake of the lifting device. The objectives of this work are to create and study a mathematical model of hydrodynamic ballast in a drilling rig. Using the inverse analysis method, the effect of some performance indicators on the braking torque of the hydraulic brake is studied.Materials and Methods. The experiments were performed using a laboratory setup, which is a model of a hydrobrake. Its valve was closed under various conditions to obtain several pressure values with the calculation of the braking torque when a certain weight was suspended. The real (field) operating conditions of the hydromatic brake were simulated, and the results obtained were compared. When creating a mathematical model, the inverse analysis method is used. It is based on the results of experimental measurements and provides expressing the totality of the effects of individual variables on the braking torque.Results. A mathematical model of the hydraulic brake has been created and tested. The dependence of the braking torque on the pressure, density, and viscosity of the ballast fluid is determined. The influence of each variable is determined experimentally since the dependence under consideration cannot be represented as a direct relationship. The inverse analysis method is used to obtain a set of constant values that give the optimal solution. Taking into account the standard error array and the minimum standard error, the statistical errors made during experimental measurements are considered. The physically acceptable range of values of the proposed mathematical model is visualized. Using a basic (nonlinear) mathematical model, the auxiliary braking torque of a hydrobrake is calculated as a function of pressure, density, and viscosity. The proposed model validity is established. The calculated values of the braking torque were used as a criterion of correctness. The erroneous discrepancy did not exceed 6 %. For additional testing of the model, a computational experiment simulating field conditions was performed.Discussion and Conclusions. For mathematical modeling of hydrodynamic ballast in a drilling rig, it is advisable to use the inverse analysis method. The model proposed in this paper relates the braking torque of a hydrobrake to the operating parameters of the fluid inside the ballast: pressure, viscosity, and density. The objectivity of the model is validated. An amendment to it is proposed to simulate the operation of the brake in the field. Based on the results obtained, in future studies it is advisable to test the created model in the field with a real payload.

Author(s):  
Seiji Ioka ◽  
Shiro Kubo ◽  
Mayumi Ochi ◽  
Kiminobu Hojo

Thermal fatigue may develop in piping elbow with high temperature stratified flow. To prevent the fatigue damage by stratified flow, it is important to know the distribution of thermal stress and temperature history in a pipe. In this study, heat conduction inverse analysis method for piping elbow was developed to estimate the temperature history and thermal stress distribution on the inner surface from the outer surface temperature history. In the inverse analysis method, the inner surface temperature was estimated by using the transfer function database which interrelates the inner surface temperature with the outer surface temperature. Transfer function database was calculated by FE analysis in advance. For some patterns of the temperature history, inverse analysis simulations were made. It was found that the inner surface temperature history was estimated with high accuracy.


Author(s):  
Liu Du ◽  
Kyung K. Choi

Structural analysis and design optimization have recently been extended to consider various uncertainties. If the statistical data for the uncertainties are sufficient to construct the input distribution function, the uncertainties can be treated as random variables and RBDO is used; otherwise, the uncertainties can be treated as fuzzy variables and PBDO is used. However, many structural design problems include both uncertainties with sufficient data and uncertainties with insufficient data. For these problems, RBDO will yield an unreliable design since the distribution functions of uncertainties are not believable. On the other hand, treating the random variables as fuzzy variables and invoking PBDO may yield too conservative design with a higher optimum cost. This paper proposes a new design formulation using the performance measure approach (PMA). For the inverse analysis, this paper proposes a new most probable/possible point (MPPP) search method called maximal failure search (MFS), which is an integration of the enhanced hybrid mean value method (HMV+) and maximal possibility search (MPS) method. Some mathematical and physical examples are used to demonstrate the proposed inverse analysis method and design formulation.


2013 ◽  
Vol 706-708 ◽  
pp. 556-559 ◽  
Author(s):  
Jing Bo Su ◽  
Hong Bing Liu ◽  
Hui De Zhao ◽  
Dong Zhang

In this paper, the interval analysis method is introduced and an uncertainty inverse analysis method is presented. The intervals of unknown parameters can be obtained by the input of measured data. Even for few measured data, the analysis results can be also obtained by the inverse analysis method. And the analysis results can be applied to appraise the uncertainty in interval. Based on parameter perturbation, the reversible inverse analysis model is proposed for linear-elastic problems. A numerical example is given to illustrate the validity of the present method. The influence is illustrated about different measured precisions and different numbers of analyzing parameters on the inverse analysis results. And the conditions of existence or convergence of the solution are given.


Sign in / Sign up

Export Citation Format

Share Document