Review: Dermatological Skin Disease Detection and Classification Based on Wavelet Transform and Artificial Neural Network

Author(s):  
Revati Kadu ◽  
U. A. Belorkar

One of the most common and augmenting health problems in the world are related to skin. The most  unpredictable and one of the most difficult entities to automatically detect and evaluate is the human skin disease because of complexities of texture, tone, presence of hair and other distinctive features. Many cases of skin diseases in the world have triggered a need to develop an effective automated screening method for detection and diagnosis of the area of disease. Therefore the objective of this work is to develop a new technique for automated detection and analysis of the skin disease images based on color and texture information for skin disease screening. In this paper, system is proposed which detects the skin diseases using Wavelet Techniques and Artificial Neural Network. This paper presents a wavelet-based texture analysis method for classification of five types of skin diseases. The method applies tree-structured wavelet transform on different color channels of red, green and blue dermoscopy images, and employs various statistical measures and ratios on wavelet coefficients. In all 99 unique features are extracted from the image. By using Artificial Neural Network, the system successfully detects different  types of dermatological skin diseases. It consists of mainly three phases image processing, training phase, detection  and classification phase.

Author(s):  
Revati Kadu ◽  
U. A. Belorkar

One of the most common and augmenting health problems in the world are related to skin. The most  unpredictable and one of the most difficult entities to automatically detect and evaluate is the human skin disease because of complexities of texture, tone, presence of hair and other distinctive features. Many cases of skin diseases in the world have triggered a need to develop an effective automated screening method for detection and diagnosis of the area of disease. Therefore the objective of this work is to develop a new technique for automated detection and analysis of the skin disease images based on color and texture information for skin disease screening. In this paper, system is proposed which detects the skin diseases using Wavelet Techniques and Artificial Neural Network. This paper presents a wavelet-based texture analysis method for classification of five types of skin diseases. The method applies tree-structured wavelet transform on different color channels of red, green and blue dermoscopy images, and employs various statistical measures and ratios on wavelet coefficients. In all 99 unique features are extracted from the image. By using Artificial Neural Network, the system successfully detects different types of dermatological skin diseases. It consists of mainly three phases image processing, training phase, detection  and classification phase.


Author(s):  
M. Yasin Pir ◽  
Mohamad Idris Wani

Speech forms a significant means of communication and the variation in pitch of a speech signal of a gender is commonly used to classify gender as male or female. In this study, we propose a system for gender classification from speech by combining hybrid model of 1-D Stationary Wavelet Transform (SWT) and artificial neural network. Features such as power spectral density, frequency, and amplitude of human voice samples were used to classify the gender. We use Daubechies wavelet transform at different levels for decomposition and reconstruction of the signal. The reconstructed signal is fed to artificial neural network using feed forward network for classification of gender. This study uses 400 voice samples of both the genders from Michigan University database which has been sampled at 16000 Hz. The experimental results show that the proposed method has more than 94% classification efficiency for both training and testing datasets.


Sign in / Sign up

Export Citation Format

Share Document