2017 ◽  
Vol 32 (4) ◽  
pp. 2640-2651 ◽  
Author(s):  
Saman Darvish Kermany ◽  
Mahmood Joorabian ◽  
Sara Deilami ◽  
Mohammad A. S. Masoum

Author(s):  
Ningbo Zhao ◽  
Hongtao Zheng ◽  
Lei Yang ◽  
Zhitao Wang

The condition monitoring and fault diagnosis of rolling element bearing is a very important research content in the field of gas turbine health management. In this paper, a hybrid fault diagnosis approach combining S-transform with artificial neural network (ANN) is developed to achieve the accurate feature extraction and effective fault diagnosis of rolling element bearing health status. Considering the nonlinear and non-stationary vibration characteristics of rolling element bearing under stable loading and rotational speeds, S-transform and singular value decomposition (SVD) theory are firstly used to process the vibration signal and extract its time-frequency information features. Then, radical basis function (RBF) neural network classification model is designed to carry out the state pattern recognition and fault diagnosis. As a practical application, the experimental data of rolling element bearing including four health status are analyzed to evaluate the performance of the proposed approach. The results demonstrate that the present hybrid fault diagnosis approach is very effective to extract the fault features and diagnose the fault pattern of rolling element bearing under different rotor speed, which may be a potential technology to enhance the condition monitoring of rotating equipment. Besides, the advantages of the developed approach are also confirmed by the comparisons with the other two approaches, i.e. the Wigner-Ville (WV) distribution and RBF neural network based method as well as the S-transform and Elman neural network based one.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2701 ◽  
Author(s):  
Masoud Ahmadipour ◽  
Hashim Hizam ◽  
Mohammad Lutfi Othman ◽  
Mohd Amran Mohd Radzi

This paper proposes a new islanding detection technique based on the combination of a wavelet packet transform (WPT) and a probabilistic neural network (PNN) for grid-tied photovoltaic systems. The point of common coupling (PCC) voltage is measured and processed by the WPT to find the normalized Shannon entropy (NSE) and the normalized logarithmic energy entropy (NLEE). Subsequently, the yield feature vectors are fed to the PNN classifier to classify the disturbances. The PNN is trained with different spread factors to obtain better classification accuracy. For the best performance of the proposed method, the precise analysis is done for the selection of the type of input data for the PNN, the type of mother wavelet, and the required transform level which is based on the accuracy, simplicity, specificity, speed, and cost parameters. The results show that, by using normalized Shannon entropy and the normalized logarithmic energy entropy, not only it offers simplicity, specificity and reduced costs, it also has better accuracy compared to other smart and passive methods. Based on the results, the proposed islanding detection technique is highly accurate and does not mal-operate during islanding and non-islanding events.


Sign in / Sign up

Export Citation Format

Share Document