scholarly journals Tinjauan Literatur Sistematik tentang Structural Similarity Index Measure untuk Deteksi Anomali Gambar

2021 ◽  
Vol 7 (2) ◽  
pp. 75
Author(s):  
Halim Bayuaji Sumarna ◽  
Ema Utami ◽  
Anggit Dwi Hartanto

Image enhancement merupakan prosedur yang digunakan untuk memproses gambar sehingga dapat memperbaiki atau meningkatkan kualitas gambar agar selanjutnya dapat dianalis untuk tujuan tertentu. Ada banyak algoritma image enhancement yang dapat diterapkan pada suatu gambar, salah satunya dapat menggunakan algoritma structural similarity index measure (SSIM), algoritma ini berfungsi sebagai alat ukur dalam menilai kualitas gambar, bekerja dengan membandingkan fitur structural dari gambar, dan kualitas gambar dijelaskan oleh kesamaan structural. Selain untuk menilai kualitas suatu gambar, SSIM dapat menjadi metode dalam menganalisis perbedaan gambar, sehingga diketahui anomali dari perbandingan dua gambar berdasarkan data structural dari sebuah gambar. Tinjauan literature sistematis ini digunakan untuk menganalisis dan fokus pada algoritma SSIM dalam mengetahui anomaly 2 gambar yang terlihat mirip secara human visual system. Hasil sistematis review menunjukkan bahwa penggunaan algoritma SSIM dalam menilai kualitas gambar berkorelasi kuat dengan HVS (Human Vision System) dan dalam deteksi anomaly gambar menghasilkan akurasi yang berbeda, karena terpengaruh intensitas cahaya dan posisi kamera dalam mengambil gambar sebagai dataset.Kata Kunci— SSIM, anomaly, gambar, deteksiImage enhancement is a procedure used to process images so that they can correct or improve image quality so that they can then be analyzed for specific purposes. Many image enhancement algorithms can be applied to an image. one of the usable methods is the structural similarity index measure (SSIM) algorithm, this algorithm serves as a measuring tool in assessing image quality. It works by comparing the structural features of images, and the image quality is explained by structural similarity. In addition to assessing the quality of an image, SSIM can be a method of analyzing image differences. So, the anomalies are known from the comparison of two images based on the structural data from an image. This systematic literature review is used to analyze and focus on the SSIM algorithm in knowing anomaly 2 images that look similar to the human visual system. Systematic review results show that the use of the SSIM algorithm in assessing image quality is strongly correlated with HVS (Human Vision System). In anomaly detection of images produces different accuracy because it is affected by light intensity and camera position in taking pictures as a dataset.Keywords— SSIM, anomaly, gambar, deteksi

2021 ◽  
Author(s):  
Basma Ahmed ◽  
Mohamed Abdel-Nasser ◽  
Osama A. Omer ◽  
Amal Rashed ◽  
Domenec Puig

Blind or non-referential image quality assessment (NR-IQA) indicates the problem of evaluating the visual quality of an image without any reference, Therefore, the need to develop a new measure that does not depend on the reference pristine image. This paper presents a NR-IQA method based on restoration scheme and a structural similarity index measure (SSIM). Specifically, we use blind restoration schemes for blurred images by reblurring the blurred image and then we use it as a reference image. Finally, we use the SSIM as a full reference metric. The experiments performed on standard test images as well as medical images. The results demonstrated that our results using a structural similarity index measure are better than other methods such as spectral kurtosis-based method.


Author(s):  
Xiangyang Xu ◽  
Qiao Chen ◽  
Ruixin Xu

Similar to auditory perception of sound system, color perception of the human visual system also presents a multi-frequency channel property. In order to study the multi-frequency channel mechanism of how the human visual system processes color information, the paper proposed a psychophysical experiment to measure the contrast sensitivities based on 17 color samples of 16 spatial frequencies on CIELAB opponent color space. Correlation analysis was carried out on the psychophysical experiment data, and the results show obvious linear correlations of observations for different spatial frequencies of different observers, which indicates that a linear model can be used to model how human visual system processes spatial frequency information. The results of solving the model based on the experiment data of color samples show that 9 spatial frequency tuning curves can exist in human visual system with each lightness, R–G and Y–B color channel and each channel can be represented by 3 tuning curves, which reflect the “center-around” form of the human visual receptive field. It is concluded that there are 9 spatial frequency channels in human vision system. The low frequency tuning curve of a narrow-frequency bandwidth shows the characteristics of lower level receptive field for human vision system, the medium frequency tuning curve shows a low pass property of the change of medium frequent colors and the high frequency tuning curve of a width-frequency bandwidth, which has a feedback effect on the low and medium frequency channels and shows the characteristics of higher level receptive field for human vision system, which represents the discrimination of details.


2020 ◽  
Vol 9 (4) ◽  
pp. 1461-1467
Author(s):  
Indrarini Dyah Irawati ◽  
Sugondo Hadiyoso ◽  
Yuli Sun Hariyani

In this study, we proposed compressive sampling for MRI reconstruction based on sparse representation using multi-wavelet transformation. Comparing the performance of wavelet decomposition level, which are Level 1, Level 2, Level 3, and Level 4. We used gaussian random process to generate measurement matrix. The algorithm used to reconstruct the image is . The experimental results showed that the use of wavelet multi-level can generate higher compression ratio but requires a longer processing time. MRI reconstruction results based on the parameters of the peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM) show that the higher the level of decomposition in wavelets, the value of both decreases.


2018 ◽  
Vol 8 (10) ◽  
pp. 2003 ◽  
Author(s):  
Haopeng Zhang ◽  
Bo Yuan ◽  
Bo Dong ◽  
Zhiguo Jiang

No-reference (NR) image quality assessment (IQA) objectively measures the image quality consistently with subjective evaluations by using only the distorted image. In this paper, we focus on the problem of NR IQA for blurred images and propose a new no-reference structural similarity (NSSIM) metric based on re-blur theory and structural similarity index (SSIM). We extract blurriness features and define image blurriness by grayscale distribution. NSSIM scores an image quality by calculating image luminance, contrast, structure and blurriness. The proposed NSSIM metric can evaluate image quality immediately without prior training or learning. Experimental results on four popular datasets show that the proposed metric outperforms SSIM and well-matched to state-of-the-art NR IQA models. Furthermore, we apply NSSIM with known IQA approaches to blurred image restoration and demonstrate that NSSIM is statistically superior to peak signal-to-noise ratio (PSNR), SSIM and consistent with the state-of-the-art NR IQA models.


Sign in / Sign up

Export Citation Format

Share Document