scholarly journals Study of League Championship Algorithm Efficiency for Global Optimization Problem

Author(s):  
D. O. Zaharov ◽  
A. P. Karpenko

The article objective is to study a new League Championship Algorithm (LCA) algorithm efficiency by its comparing with the efficiency of the Particle Swarm optimization (PSO) algorithm.The article presents a brief description of the terms used in the League Championship algorithm, describes the basic rules of the algorithm, on the basis of which the iterative process for solving the global optimization problem is built.Gives a detailed description of the League Championship algorithm, which comprises a flowchart of the algorithm, as well as a formalization of all its main steps.Depicts an exhaustive description of the software developed to implement the League Championship algorithm to solve global optimization problems.Briefly describes the modified particle swarm algorithm. Presents the values of all free parameters of the algorithm and the algorithm modifications, which make it different from the classical version, as well.The main part of the article shows the results of a great deal of computational experiments using two abovementioned algorithms. All the performance criteria, used for assessment of the algorithms efficiency, are given.Computational experiments were performed using the spherical function, as well as the Rosenbrock, Rastrigin, and Ackley functions. The results of the experiments are summarized in Tables, and also illustrated in Figures. Experiments were performed for the vector dimension of the variable parameters that is equal to 2, 4, 8, 16, 32, and 64.An analysis of the results of computational experiments involves a full assessment of the efficiency of the League Championship algorithm, and also provides an answer about expediency for further algorithm development.It is shown that the League Championship algorithm presented in the article has a high development potential and needs further work for its study.

2015 ◽  
Vol 24 (05) ◽  
pp. 1550017 ◽  
Author(s):  
Aderemi Oluyinka Adewumi ◽  
Akugbe Martins Arasomwan

This paper presents an improved particle swarm optimization (PSO) technique for global optimization. Many variants of the technique have been proposed in literature. However, two major things characterize many of these variants namely, static search space and velocity limits, which bound their flexibilities in obtaining optimal solutions for many optimization problems. Furthermore, the problem of premature convergence persists in many variants despite the introduction of additional parameters such as inertia weight and extra computation ability. This paper proposes an improved PSO algorithm without inertia weight. The proposed algorithm dynamically adjusts the search space and velocity limits for the swarm in each iteration by picking the highest and lowest values among all the dimensions of the particles, calculates their absolute values and then uses the higher of the two values to define a new search range and velocity limits for next iteration. The efficiency and performance of the proposed algorithm was shown using popular benchmark global optimization problems with low and high dimensions. Results obtained demonstrate better convergence speed and precision, stability, robustness with better global search ability when compared with six recent variants of the original algorithm.


Author(s):  
Rongrong Li ◽  
Linrun Qiu ◽  
Dongbo Zhang

In this article, a hierarchical cooperative algorithm based on the genetic algorithm and the particle swarm optimization is proposed that the paper should utilize the global searching ability of genetic algorithm and the fast convergence speed of particle swarm optimization. The proposed algorithm starts from Individual organizational structure of subgroups and takes full advantage of the merits of the particle swarm optimization algorithm and the genetic algorithm (HCGA-PSO). The algorithm uses a layered structure with two layers. The bottom layer is composed of a series of genetic algorithm by subgroup that contributes to the global searching ability of the algorithm. The upper layer is an elite group consisting of the best individuals of each subgroup and the particle swarm algorithm is used to perform precise local search. The experimental results demonstrate that the HCGA-PSO algorithm has better convergence and stronger continuous search capability, which makes it suitable for solving complex optimization problems.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Martins Akugbe Arasomwan ◽  
Aderemi Oluyinka Adewumi

Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal of this paper is to experimentally establish the fact that LDIW-PSO is very much efficient if its parameters are properly set. First, an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values, five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted.


2015 ◽  
Vol 740 ◽  
pp. 401-404
Author(s):  
Yun Zhi Li ◽  
Quan Yuan ◽  
Yang Zhao ◽  
Qian Hui Gang

The particle swarm optimization (PSO) algorithm as a stochastic search algorithm for solving reactive power optimization problem. The PSO algorithm converges too fast, easy access to local convergence, leading to convergence accuracy is not high, to study the particle swarm algorithm improvements. The establishment of a comprehensive consideration of the practical constraints and reactive power regulation means no power optimization mathematical model, a method using improved particle swarm algorithm for reactive power optimization problem, the algorithm weighting coefficients and inactive particles are two aspects to improve. Meanwhile segmented approach to particle swarm algorithm improved effectively address the shortcomings evolution into local optimum and search accuracy is poor, in order to determine the optimal reactive power optimization program.


2013 ◽  
Vol 734-737 ◽  
pp. 2875-2879
Author(s):  
Tie Bin Wu ◽  
Yun Cheng ◽  
Yun Lian Liu ◽  
Tao Yun Zhou ◽  
Xin Jun Li

Considering that the particle swarm optimization (PSO) algorithm has a tendency to get stuck at the local solutions, an improved PSO algorithm is proposed in this paper to solve constrained optimization problems. In this algorithm, the initial particle population is generated using good point set method such that the initial particles are uniformly distributed in the optimization domain. Then, during the optimization process, the particle population is divided into two sub-populations including feasible sub-population and infeasible sub-population. Finally, different crossover operations and mutation operations are applied for updating the particles in each of the two sub-populations. The effectiveness of the improved PSO algorithm is demonstrated on three benchmark functions.


2011 ◽  
Vol 383-390 ◽  
pp. 1071-1076
Author(s):  
Bin Yang ◽  
Qi Lin Zhang

As a new paradigm of Swarm Intelligence which is inspired by concepts from ’Social Psychology’ and ’Artificial Life’, the Particle Swarm Optimization (PSO), it is widely applied to various kinds of optimization problems especially of nonlinear, non-differentiable or non-convex types. In this paper, a modified guaranteed converged particle swarm algorithm (MGCPSO) is proposed in this paper, which is inspired by guaranteed converged particle swarm algorithm (GCPSO) proposed by von den Bergh. The section sizing optimization problem of steel framed structure subjected to various constraints based on Chinese Design Code are selected to illustrate the performance of the presented optimization algorithm.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mio Horai ◽  
Hideo Kobayashi ◽  
Takashi G. Nitta

We extend work by Pei-Ping and Gui-Xia, 2007, to a global optimization problem for more general functions. Pei-Ping and Gui-Xia treat the optimization problem for the linear sum of polynomial fractional functions, using a branch and bound approach. We prove that this extension makes possible to solve the following nonconvex optimization problems which Pei-Ping and Gui-Xia, 2007, cannot solve, that the sum of the positive (or negative) first and second derivatives function with the variable defined by sum of polynomial fractional function by using branch and bound algorithm.


Sign in / Sign up

Export Citation Format

Share Document