scholarly journals On the Performance of Linear Decreasing Inertia Weight Particle Swarm Optimization for Global Optimization

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Martins Akugbe Arasomwan ◽  
Aderemi Oluyinka Adewumi

Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal of this paper is to experimentally establish the fact that LDIW-PSO is very much efficient if its parameters are properly set. First, an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values, five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted.

2015 ◽  
Vol 24 (05) ◽  
pp. 1550017 ◽  
Author(s):  
Aderemi Oluyinka Adewumi ◽  
Akugbe Martins Arasomwan

This paper presents an improved particle swarm optimization (PSO) technique for global optimization. Many variants of the technique have been proposed in literature. However, two major things characterize many of these variants namely, static search space and velocity limits, which bound their flexibilities in obtaining optimal solutions for many optimization problems. Furthermore, the problem of premature convergence persists in many variants despite the introduction of additional parameters such as inertia weight and extra computation ability. This paper proposes an improved PSO algorithm without inertia weight. The proposed algorithm dynamically adjusts the search space and velocity limits for the swarm in each iteration by picking the highest and lowest values among all the dimensions of the particles, calculates their absolute values and then uses the higher of the two values to define a new search range and velocity limits for next iteration. The efficiency and performance of the proposed algorithm was shown using popular benchmark global optimization problems with low and high dimensions. Results obtained demonstrate better convergence speed and precision, stability, robustness with better global search ability when compared with six recent variants of the original algorithm.


2012 ◽  
Vol 239-240 ◽  
pp. 1291-1297 ◽  
Author(s):  
Hai Sheng Qin ◽  
Deng Yue Wei ◽  
Jun Hui Li ◽  
Lei Zhang ◽  
Yan Qiang Feng

A new particle swarm optimization (PSO) algorithm (a PSO with Variety Factor, VFPSO) based on the PSO was proposed. Compared with the previous algorithm, the proposed algorithm is to update the Variety Factor and to improve the inertia weight of the PSO. The target of the improvement is that the new algorithm could go on enhancing the robustness as before and should reduce the risk of premature convergence. The simulation experiments show that it has great advantages of convergence property over some other modified PSO algorithms, and also avoids algorithm being trapped in local minimum effectively. So it can avoid the phenomenon of premature convergence.


2012 ◽  
Vol 195-196 ◽  
pp. 1060-1065
Author(s):  
Chang Yuan Jiang ◽  
Shu Guang Zhao ◽  
Li Zheng Guo ◽  
Chuan Ji

Based on the analyzing inertia weight of the standard particle swarm optimization (PSO) algorithm, an improved PSO algorithm is presented. Convergence condition of PSO is obtained through solving and analyzing the differential equation. By the experiments of four Benchmark function, the results show the performance of S-PSO improved more clearly than the standard PSO and random inertia weight PSO. Theoretical analysis and simulation experiments show that the S-PSO is efficient and feasible.


2020 ◽  
Vol 53 (4) ◽  
pp. 559-566
Author(s):  
Lakhdar Kaddouri ◽  
Amel B.H. Adamou-Mitiche ◽  
Lahcene Mitiche

Particle Swarm Optimization (PSO) is an evolutionary algorithm widely used in optimization problems. It is characterized by a fast convergence, which can lead the algorithm to stagnate in local optima. In the present paper, a new Multi-PSO algorithm for the design of two-dimensional infinite impulse response (IIR) filters is built. It is based on the standard PSO and uses a new initialization strategy. This strategy is relayed to two types of swarms: a principal and auxiliaries. To improve the performance of the algorithm, the search space is divided into several areas, which allows a best covering and leading to a better exploration in each zone separately. This solved the problem of fast convergence in standard PSO. The results obtained demonstrate the effectiveness of the Multi-PSO algorithm in the filter coefficients optimization.


2010 ◽  
Vol 1 (3) ◽  
pp. 59-79 ◽  
Author(s):  
S. Nguyen ◽  
V. Kachitvichyanukul

Particle Swarm Optimization (PSO) is one of the most effective metaheuristics algorithms, with many successful real-world applications. The reason for the success of PSO is the movement behavior, which allows the swarm to effectively explore the search space. Unfortunately, the original PSO algorithm is only suitable for single objective optimization problems. In this paper, three movement strategies are discussed for multi-objective PSO (MOPSO) and popular test problems are used to confirm their effectiveness. In addition, these algorithms are also applied to solve the engineering design and portfolio optimization problems. Results show that the algorithms are effective with both direct and indirect encoding schemes.


2013 ◽  
Vol 373-375 ◽  
pp. 1131-1134
Author(s):  
Wei Yi Qian ◽  
Guang Lei Liu

We propose a modified particle swarm optimization (PSO) algorithm named SPSO for the global optimization problems. In SPSO, we introduce the crossover operator in order to increase the diversity of the swarm. The crossover operator is contracted by forming a simplex. The crossover operator is used if the diversity of the swarm is below a threshold (denoted hlow) and continues until the diversity reaches the required value (hhigh). The six test problems are used for numerical study. Numerical results indicate that the proposed algorithm is better than some existing PSO.


2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Sami Zdiri ◽  
Jaouher Chrouta ◽  
Abderrahmen Zaafouri

In this study, a modified version of multiswarm particle swarm optimization algorithm (MsPSO) is proposed. However, the classical MsPSO algorithm causes premature stagnation due to the limitation of particle diversity; as a result, it is simple to slip into a local optimum. To overcome the above feebleness, this work presents a heterogeneous multiswarm PSO algorithm based on adaptive inertia weight strategies called (A-MsPSO). The MsPSO’s main advantages are that it is simple to use and that there are few settings to alter. In the MsPSO method, the inertia weight is a key parameter affecting considerably convergence, exploration, and exploitation. In this manuscript, an adaptive inertia weight is adopted to ameliorate the global search ability of the classical MsPSO algorithm. Its performance is based on exploration, which is defined as an algorithm’s capacity to search through a variety of search spaces. It also aids in determining the best ideal capability for searching a small region and determining the candidate answer. If a swarm discovers a global best location during iterations, the inertia weight is increased, and exploration in that direction is enhanced. The standard tests and indications provided in the specialized literature are used to show the efficiency of the proposed algorithm. Furthermore, findings of comparisons between A-MsPSO and six other common PSO algorithms show that our proposal has a highly promising performance for handling various types of optimization problems, leading to both greater solution accuracy and more efficient solution times.


Author(s):  
Wenbin Liu ◽  
Nengsheng Luo ◽  
Guo Pan ◽  
Aijia Ouyang

A chaos particle swarm optimization (CPSO) algorithm based on the chaos operator (CS) is proposed for global optimization problems and parameter inversion of the nonlinear sun shadow model in our study. The CPSO algorithm combines the local search ability of CS and the global search ability of PSO algorithm. The CPSO algorithm can not only solve the global optimization problems effectively, but also address the parameter inversion problems of the date of sun shadow model location successfully. The results of numerical experiment and simulation experiment show that the CPSO algorithm has higher accuracy and faster convergence than the-state-of-the-art techniques. It can effectively improve the computing accuracy and computing efficiency of the global optimization problems, and also provide a novel method to solve the problems of integer parameter inversion in real life.


2021 ◽  
Vol 11 (2) ◽  
pp. 839
Author(s):  
Shaofei Sun ◽  
Hongxin Zhang ◽  
Xiaotong Cui ◽  
Liang Dong ◽  
Muhammad Saad Khan ◽  
...  

This paper focuses on electromagnetic information security in communication systems. Classical correlation electromagnetic analysis (CEMA) is known as a powerful way to recover the cryptographic algorithm’s key. In the classical method, only one byte of the key is used while the other bytes are considered as noise, which not only reduces the efficiency but also is a waste of information. In order to take full advantage of useful information, multiple bytes of the key are used. We transform the key into a multidimensional form, and each byte of the key is considered as a dimension. The problem of the right key searching is transformed into the problem of optimizing correlation coefficients of key candidates. The particle swarm optimization (PSO) algorithm is particularly more suited to solve the optimization problems with high dimension and complex structure. In this paper, we applied the PSO algorithm into CEMA to solve multidimensional problems, and we also add a mutation operator to the optimization algorithm to improve the result. Here, we have proposed a multibyte correlation electromagnetic analysis based on particle swarm optimization. We verified our method on a universal test board that is designed for research and development on hardware security. We implemented the Advanced Encryption Standard (AES) cryptographic algorithm on the test board. Experimental results have shown that our method outperforms the classical method; it achieves approximately 13.72% improvement for the corresponding case.


2021 ◽  
Author(s):  
Ahlem Aboud ◽  
Nizar Rokbani ◽  
Seyedali Mirjalili ◽  
Abdulrahman M. Qahtani ◽  
Omar Almutiry ◽  
...  

<p>Multifactorial Optimization (MFO) and Evolutionary Transfer Optimization (ETO) are new optimization challenging paradigms for which the multi-Objective Particle Swarm Optimization system (MOPSO) may be interesting despite limitations. MOPSO has been widely used in static/dynamic multi-objective optimization problems, while its potentials for multi-task optimization are not completely unveiled. This paper proposes a new Distributed Multifactorial Particle Swarm Optimization algorithm (DMFPSO) for multi-task optimization. This new system has a distributed architecture on a set of sub-swarms that are dynamically constructed based on the number of optimization tasks affected by each particle skill factor. DMFPSO is designed to deal with the issues of handling convergence and diversity concepts separately. DMFPSO uses Beta function to provide two optimized profiles with a dynamic switching behaviour. The first profile, Beta-1, is used for the exploration which aims to explore the search space toward potential solutions, while the second Beta-2 function is used for convergence enhancement. This new system is tested on 36 benchmarks provided by the CEC’2021 Evolutionary Transfer Multi-Objective Optimization Competition. Comparatives with the state-of-the-art methods are done using the Inverted General Distance (IGD) and Mean Inverted General Distance (MIGD) metrics. Based on the MSS metric, this proposal has the best results on most tested problems.</p>


Sign in / Sign up

Export Citation Format

Share Document