scholarly journals High-capacity hyperelastic hold-down for cross-laminated timber shear walls

2021 ◽  
Author(s):  
◽  
Abubakar Oyawoye

Cross-laminated timber (CLT) continues to establish a stronger footing in the Canadian construction industry, also as an option for lateral load resisting systems, such as shear walls. Recent modifications to the Canadian Standard for Engineering Design in Wood (CSA O86- 19) allow only rocking kinematics as energy dissipative mechanics for CLT shear walls, whereby hold-down must remain elastic. These provisions necessitate the development of novel hold-down solutions. In this report, the performance of a hyper-elastic high-capacity hold-down was investigated at the component level through tests on: (1) hold-down steel rod, (2) CLT housing, and (3) hold-down assemblies with different sizes of rubber pads. The tests demonstrated that: i) the rubber hold-down can remain elastic under a rocking kinematics provided that the elastic limit of the steel rod is not exceeded; ii) failure of the rod is the subsequent desired ductile mode; iii) the CLT width influences the failure mode; iv) the shape factor influences the achievable deformation of the rubber pad; v) increasing the rubber pad thickness reduces the hold-down stiffness; and vi) increasing the rubber pad width increases the hold-down stiffness. Numerical modelling and optimization suggested that using an intermediate steel laminate between layers of rubber pads could improve its performance. Based on the results of the investigations presented herein, a capacity-design procedure for the hyper-elastic hold-downs was proposed.






2021 ◽  
Vol 239 ◽  
pp. 112354
Author(s):  
Jianyang Xue ◽  
Guoqi Ren ◽  
Liangjie Qi ◽  
Chenwei Wu ◽  
Zhen Yuan


Author(s):  
Md Shahnewaz ◽  
Thomas Tannert ◽  
Marjan Popovski

Cross-laminated timber (CLT) is becoming a viable option for mid-rise buildings in North America. CLT walls are very effective in resisting lateral forces resulting from wind and seismic loads, yet no standard provisions are available to estimate the resistance of CLT shear walls under lateral loading. The present research investigated CLT shear wall’s performance by evaluating the preferred kinematic rocking behaviour. An analytical procedure was proposed to estimate the resistance of CLT shear walls in a platform type construction. Finite element models of CLT shear with various brackets and hold-downs connections were developed. The models were validated against experimental results. Furthermore, a parametric study on CLT shear walls with the variation of type and number of connectors was conducted. The resistance estimated from parametric study and against analytical were compared. The proposed formulas can be useful tool for the design of CLT platform-type buildings, however, require further experimental validation.



2018 ◽  
Vol 77 (1) ◽  
pp. 79-92 ◽  
Author(s):  
F. Benedetti ◽  
V. Rosales ◽  
A. Opazo-Vega ◽  
J. Norambuena-Contreras ◽  
A. Jara-Cisterna


2020 ◽  
Vol 221 ◽  
pp. 111091
Author(s):  
Md Shahnewaz ◽  
Marjan Popovski ◽  
Thomas Tannert


2020 ◽  
Author(s):  
◽  
Hosein Asgari

Cross-laminated Timber (CLT) is increasingly being used in tall buildings. However, there are some challenges when designing high-rise CLT structures, amongst them the need for novel hold-downs (HD), for shear walls. While commonly used HDs behave as a dissipative connection, the current Canadian Standard for Engineering Design in Wood recommends designing HDs as a non-dissipative connection. As hyperelastic material, an elastomer (rubber) is capable to carry high loads without inelastic deformation. This thesis presents experimental studies at material- and component-levels using a hyperelastic rubber HD solution for CLT walls. A total of 53 quasi-static monotonic and cyclic tests were performed. The HDs exhibited high strength and deformation capacity without any residual deformation after unloading. The shape factor and loaded area of rubber layers were found as the main effective factors on the rubber HD’s response, and an empirical load-displacement relation was also developed based on these parameters.



2019 ◽  
Vol 145 (12) ◽  
pp. 04019149 ◽  
Author(s):  
Md Shahnewaz ◽  
Marjan Popovski ◽  
Thomas Tannert


2013 ◽  
Vol 48 ◽  
pp. 980-991 ◽  
Author(s):  
Yin-Lan Shen ◽  
Johannes Schneider ◽  
Solomon Tesfamariam ◽  
Siegfried F. Stiemer ◽  
Zai-Gen Mu


Author(s):  
Hossein Daneshvar ◽  
Jan Niederwestberg ◽  
Carla Dickof ◽  
Jean-Philippe Letarte ◽  
Ying Hei Chui

In the context of the global trend of designing sustainable structures, the attention towards high-rise timber buildings of 8 to 25 storeys has been increasing in recent years. Balloon construction technique using a relatively new heavy timber material, cross-laminated timber (CLT), has been shown to be promising for high-rise building applications, given its compatibility with off-site construction techniques and its desirable mechanical characteristics. To date, tall timber buildings using CLT have been built mainly in non-seismic or low-seismic locations around the world, whereas their application in high seismic regions has been limited to platform construction. More research on the behaviour of CLT structures during seismic events in terms of system behaviour as well as the behaviour of components, particularly connections, is required. The research presented in this paper seeks to initiate the process of seismic design of tall wood buildings using a balloon construction technique. Two buildings, one three-storey fictitious building and one to-be-constructed ten-storey building, both located on the west coast of Canada, were considered and designed based on the NBCC 2015 seismic provisions. The loads on the shear walls, which span over three storeys, were extracted in order to estimate realistic demands on lateral load resisting systems (LLRS) in the balloon construction. Different connections, including base shear connections, panel-to-panel shear connections, as well as high-capacity hold-downs, were designed accordingly. An experimental program was developed to investigate the behaviour of these connections, focusing on yielding and failure mechanisms in each connection category. This paper explains different phases of the experimental program and introduces connection details designed to achieve the research goals. The results of this study will contribute to the body of knowledge on seismic behaviour of prefabricated mass timber buildings, and will benefit engineers and practitioners using timber to design high-rise structures.



Sign in / Sign up

Export Citation Format

Share Document