scholarly journals Field Performance of Entomopathogenic Nematodes against the Larvae of Zabrus spp. Clairville, 1806 (Coleoptera: Carabidae)

2021 ◽  
Vol 7 (3) ◽  
pp. 429-437
Author(s):  
Ebubekir YÜKSEL ◽  
Yunus Emre TAŞKESEN ◽  
Ramazan CANHİLAL
2015 ◽  
Author(s):  
Matthew P Hill ◽  
Antoinette P Malan ◽  
John S Terblanche

Thermal physiology of entomopathogenic nematodes (EPN) is a critical aspect of field performance and fitness. Thermal limits for survival and activity, and the ability of these limits to adjust (i.e. show phenotypic flexibility) depending on recent thermal history, are generally poorly established, especially for non-model nematode species. Here we report the acute thermal limits for survival, and the thermal acclimation-related plasticity thereof for two key endemic South African EPN species, Steinernema yirgalemense and Heterorhabditis zealandica. Results including LT50 indicate S. yirgalemense (LT50 = 40.8±0.3°C) has greater high temperature tolerance than H. zealandica (LT50 = 36.7±0.2°C), but S. yirgalemense (LT50 = -2.4±0°C) has poorer low temperature tolerance in comparison to H. zealandica (LT50 = -9.7±0.3°C), suggesting these two EPN species occupy divergent thermal niches to one another. Acclimation had both negative and positive effects on temperature stress survival of both species, although the overall variation meant that many of these effects were non-significant. There was no indication of a consistent loss of plasticity with improved basal thermal tolerance for either species at upper lethal temperatures. At lower temperatures measured for H. zealandica, the 5°C acclimation lowered survival until below -12.5°C, where after it increased survival. Such results indicate that the thermal niche breadth of EPN species can differ significantly depending on recent thermal conditions, and should be characterized across a broad range of species to understand the evolution of thermal limits to performance and survival in this group.


2015 ◽  
Author(s):  
Matthew P Hill ◽  
Antoinette P Malan ◽  
John S Terblanche

Thermal physiology of entomopathogenic nematodes (EPN) is a critical aspect of field performance and fitness. Thermal limits for survival and activity, and the ability of these limits to adjust (i.e. show phenotypic flexibility) depending on recent thermal history, are generally poorly established, especially for non-model nematode species. Here we report the acute thermal limits for survival, and the thermal acclimation-related plasticity thereof for two key endemic South African EPN species, Steinernema yirgalemense and Heterorhabditis zealandica. Results including LT50 indicate S. yirgalemense (LT50 = 40.8±0.3°C) has greater high temperature tolerance than H. zealandica (LT50 = 36.7±0.2°C), but S. yirgalemense (LT50 = -2.4±0°C) has poorer low temperature tolerance in comparison to H. zealandica (LT50 = -9.7±0.3°C), suggesting these two EPN species occupy divergent thermal niches to one another. Acclimation had both negative and positive effects on temperature stress survival of both species, although the overall variation meant that many of these effects were non-significant. There was no indication of a consistent loss of plasticity with improved basal thermal tolerance for either species at upper lethal temperatures. At lower temperatures measured for H. zealandica, the 5°C acclimation lowered survival until below -12.5°C, where after it increased survival. Such results indicate that the thermal niche breadth of EPN species can differ significantly depending on recent thermal conditions, and should be characterized across a broad range of species to understand the evolution of thermal limits to performance and survival in this group.


2008 ◽  
Vol 18 (1) ◽  
pp. 84-89 ◽  
Author(s):  
Erick X. Caamano ◽  
Raymond A. Cloyd ◽  
Leellen F. Solter ◽  
Declan J. Fallon

The quality of entomopathogenic nematodes (EPN) is critical to their success as biological control agents, but it is difficult to evaluate quality because standard procedures are not available. Generally, the quality of biological control agents is determined by field performance because end users may have minimal knowledge pertaining to the condition of biological control agents before application. This study assessed the variability in quality of commercially available EPN products. The authors evaluated preapplication survival of five EPN formulations, Steinernema feltiae (NemaShield, Nemasys, Gnat Not, Horticultural Scanmask), and Heterorhabditis indica (GrubStake-Hi), based on eight shipments/samples of each EPN product received during a 5-month period (July to November). The estimated total number of EPN delivered per shipment (i.e., sample) was compared with the expected quantity listed on the label, and percent live EPN was determined for each shipment. One-half of the shipments of Gnat Not (four of eight) contained 40% to 70% of the number of EPN expected based on the label (25 million). The remaining shipments contained consistently higher numbers, with 99% of the expected quantity of EPN received. Entomopathogenic nematode mean percent survival was highest for Nemasys (98%) and lowest for Horticultural Scanmask (56%). The overall mean percent survival for Gnat Not and GrubStake-Hi, both from the same supplier, was more than 85%. Survival of EPN in the NemaShield product was as low as 50%, but was typically between 65% and 75%. NemaShield and Nemasys were the only two EPN products that provided return policy information if the product was damaged in any way. It is important for distributors and suppliers to ensure that EPN products are in quality condition before shipping to avoid performance failures and loss of customers. In addition, end users need to evaluate shipments upon receipt to determine the viability of EPN products.


EDIS ◽  
2017 ◽  
Vol 2017 (5) ◽  
pp. 4
Author(s):  
Danielle M. Sprague ◽  
Joseph E. Funderburk

Originally published on the Featured Creatures Website at http://entnemdept.ufl.edu/creatures/nematode/Thripinema_spp.htm Includes: Introduction - Distribution - Life Cycle and Biology - Symptoms - Hosts and Identification - Economic Importance - Management - Selected References


2011 ◽  
Vol 12 (2) ◽  
pp. 94-99 ◽  
Author(s):  
A. S. Davis ◽  
J. R. Pinto ◽  
D. F. Jacobs

Sign in / Sign up

Export Citation Format

Share Document