Field Performance of Entomopathogenic Nematodes for Suppression of Western Corn Rootworm (Coleoptera: Chrysomelidae)

1996 ◽  
Vol 89 (2) ◽  
pp. 366-372 ◽  
Author(s):  
Jan J. Jackson
2019 ◽  
Vol 116 (46) ◽  
pp. 23174-23181 ◽  
Author(s):  
Xi Zhang ◽  
Cong van Doan ◽  
Carla C. M. Arce ◽  
Lingfei Hu ◽  
Sandra Gruenig ◽  
...  

Plants defend themselves against herbivores through the production of toxic and deterrent metabolites. Adapted herbivores can tolerate and sometimes sequester these metabolites, allowing them to feed on defended plants and become toxic to their own enemies. Can herbivore natural enemies overcome sequestered plant defense metabolites to prey on adapted herbivores? To address this question, we studied how entomopathogenic nematodes cope with benzoxazinoid defense metabolites that are produced by grasses and sequestered by a specialist maize herbivore, the western corn rootworm. We find that nematodes from US maize fields in regions in which the western corn rootworm was present over the last 50 y are behaviorally and metabolically resistant to sequestered benzoxazinoids and more infective toward the western corn rootworm than nematodes from other parts of the world. Exposure of a benzoxazinoid-susceptible nematode strain to the western corn rootworm for 5 generations results in higher behavioral and metabolic resistance and benzoxazinoid-dependent infectivity toward the western corn rootworm. Thus, herbivores that are exposed to a plant defense sequestering herbivore can evolve both behavioral and metabolic resistance to plant defense metabolites, and these traits are associated with higher infectivity toward a defense sequestering herbivore. We conclude that plant defense metabolites that are transferred through adapted herbivores may result in the evolution of resistance in herbivore natural enemies. Our study also identifies plant defense resistance as a potential target for the improvement of biological control agents.


Author(s):  
A. Sikura ◽  
V. Gunchak

The article presents the results of studies on the possibility of using entomopathogenic nematodes and entomophages against the western corn rootworm. It is established that the bioagents under study are able to regulate the number of Diabrotica virgifera virgifera Le Conte. The obtained results showed the prospects of using these biological agents for phytophage control.


2019 ◽  
Author(s):  
Xi Zhang ◽  
Cong van Doan ◽  
Carla C.M. Arce ◽  
Lingfei Hu ◽  
Sandra Gruenig ◽  
...  

AbstractPlants defend themselves against herbivores through the production of toxic and deterrent metabolites. Adapted herbivores can tolerate and sequester these metabolites, allowing them to feed on defended plants and become toxic to their own enemies. Can herbivore natural enemies overcome sequestered plant defense metabolites to prey on adapted herbivores? To address this question, we studied how entomopathogenic nematodes cope with benzoxazinoid defense metabolites that are produced by grasses and sequestered by a specialist maize herbivore, the western corn rootworm. We find that nematodes from US maize fields in regions in which the western corn rootworm was present over the last 50 years are behaviorally and metabolically resistant to sequestered benzoxazinoids and more infective towards the western corn rootworm than nematodes from other parts of the world. Exposure of a benzoxazinoid-susceptible nematode strain to the western corn rootworm for five generations results in higher behavioral and metabolic resistance and benzoxazinoid-dependent infectivity towards the western corn rootworm. Thus, herbivores that are exposed to a plant defense sequestering herbivore can evolve both behavioral and metabolic resistance to plant defense metabolites, and these traits are associated with higher infectivity towards a defense sequestering herbivore. We conclude that plant defense metabolites that are transferred through adapted herbivores may result in the evolution of resistance in herbivore natural enemies. Our study also identifies plant defense resistance as a novel target for the improvement of biological control agents.


Insects ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 202 ◽  
Author(s):  
Špela Modic ◽  
Primož Žigon ◽  
Aleš Kolmanič ◽  
Stanislav Trdan ◽  
Jaka Razinger

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera, Chrysomelidae), is an important insect pest of maize in North America and Central and Eastern Europe. In Central Europe, the larvae emerge in May and its three instars feed intensively on maize roots in June, causing plant lodging that leads to a loss of economic yield. A three-year field experiment (2016–2018) was conducted to compare the effectiveness i) of soil-applied granular insecticide based on the active ingredient tefluthrin, ii) of maize seeds dressed with thiacloprid, and iii) entomopathogenic nematodes Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae, product Dianem) against WCR larvae. An additional treatment with alcohol ethoxylate (i.e., soil conditioner) mixed with entomopathogenic nematodes was performed in 2017 and 2018 to check for any increase of entomopathogenic nematodes’ effectiveness. Field tests were carried out in two fields infested naturally with a WCR pest population, one in Bučečovci (Eastern Slovenia) and the other in Šmartno pri Cerkljah (northern Slovenia), exhibiting dissimilar pedo-climatic conditions and soil pest densities. The treatments were performed in five replicates per experiment in each year. The efficacy of the treatments was very similar at both locations, despite the approximately five-fold lower WCR soil pest densities in northern than in eastern Slovenia, as well as being constant over time. The largest number of WCR beetles was observed in the negative control, followed by that of beetles subjected to thiacloprid treatment (insignificant decrease taking into account the entire three-year dataset). Treatments with tefluthrin (44.1 ± 11.7%), H. bacteriophora (46.2 ± 7.4%), and H. bacteriophora + alcohol ethoxylate (49.2 ± 1.8%) significantly decreased the numbers of emerging beetles. Treatments of thiacloprid, H. bacteriophora, and H. bacteriophora + alcohol ethoxylate additionally led to significantly increased maize plant weights. Furthermore, entomopathogenic nematodes were able to persist in maize fields for almost five months at both experimental locations in silty and sandy loam soils. It was concluded that the control of WCR larvae in maize using the entomopathogenic nematode H. bacteriophora is as effective as a tefluthrin treatment, and could thus offer a sustainable Diabrotica v. virgifera biological control management option in Europe.


Author(s):  
Jinwon Kim ◽  
Ivan Hiltpold ◽  
Geoffrey Jaffuel ◽  
Ilham Sbaiti ◽  
Bruce E. Hibbard ◽  
...  

AbstractEntomopathogenic nematodes (EPN) have great potential as biological control agents against root-feeding insects. They have a rapid and long-lasting mode of action, minimal adverse effects on the environment and can be readily mass-produced. However, they have a relatively short shelf-life and are susceptible to desiccation and UV light. These shortcomings may be overcome by encapsulating EPN in Ca2+-alginate hydrogels, which have been shown to provide a humid and UV protective shelter. Yet, current Ca2+-alginate formulations do not keep EPN vigorous and infectious for a prolonged period of time and do not allow for their controlled release upon application. Here, we introduce solid Ca2+-alginate beads which we supplemented with glycerol to better retain the EPN during storage and to ensure a steady release when applied in soil. Glycerol-induced metabolic arrest in EPN (Heterorhabditis bacteriophora) resulting in quiescence and total retainment of EPN when added to beads made with 0.5% sodium alginate and 2% CaCl2·2H2O solutions. More than 4,000 EPN could be embedded in a single 4–5-mm diameter bead, and quiescence could be broken by adding water, after which the EPN readily emerged from the beads. In a field trial, the EPN beads were as effective in reducing root damage by the western corn rootworm (WCR, Diabrotica virgifera virgifera) as EPN that were applied in water. Although further improvements are desirable, we conclude that Ca2+-alginate beads can provide an effective and practical way to apply EPN for the control of WCR larvae.


2012 ◽  
Vol 358 (1-2) ◽  
pp. 11-25 ◽  
Author(s):  
Ivan Hiltpold ◽  
Bruce E. Hibbard ◽  
B. Wade French ◽  
Ted C. J. Turlings

Sign in / Sign up

Export Citation Format

Share Document