scholarly journals ON A NEW GENERALIZED BETA FUNCTION DEFINED BY THE GENERALIZED WRIGHT FUNCTION AND ITS APPLICATIONS

2021 ◽  
Vol 6 (2) ◽  
pp. 852
Author(s):  
UMAR MUHAMMAD ABUBAKAR ◽  
Soraj Patel

Various extensions of classical gamma, beta, Gauss hypergeometric and confluent hypergeometric functions have been proposed recently by many researchers. In this paper, we further generalized extended beta function with some of its properties such as symmetric properties, summation formulas, integral representations, connection with some other special functions such as classical beta, error, Mittag – Leffler, incomplete gamma, hypergeometric, classical Wright, Fox – Wright, Fox H and Meijer G – functions. Furthermore, the generalized beta function is used to generalize classical and other extended Gauss hypergeometric, confluent hypergeometric, Appell’s and Lauricella’s functions.

Author(s):  
Gauhar Rahman ◽  
Gulnaz Kanwal ◽  
Kottakkaran Sooppy Nisar ◽  
Abdul Ghaffar

The main objective of this paper is to introduce a further extension of extended (p, q)-beta function by considering two Mittag-Leffler function in the kernel. We investigate various properties of this newly defined beta function such as integral representations, summation formulas and Mellin transform. We define extended beta distribution and its mean, variance and moment generating function with the help of extension of beta function. Also, we establish an extension of extended (p, q)-hypergeometric and (p, q)-confluent hypergeometric functions by using the extension of beta function. Various properties of newly defined extended hypergeometric and confluent hypergeometric functions such as integral representations, Mellin transformations, differentiation formulas, transformation and summation formulas are investigated.


2020 ◽  
Vol 1 (1) ◽  
pp. 87-98
Author(s):  
Maisoon A. Kulib ◽  
Ahmed A. Al-Gonah ◽  
Salem S. Barahmah

Motivated mainly by a variety of applications of Euler's Beta, hypergeometric, and confluent hypergeometric functions together with their extensions in a wide range of research fields such asengineering, chemical, and physical problems. In this paper, we introduce modified forms of some extended special functions such as Gamma function, Beta function, hypergeometric function and confluent hypergeometric function by making use of the idea given in reference \cite{9}. Also, certain investigations including summation formulas, integral representations and Mellin transform of these modified functions are derived. Further, many known results are obtained asspecial cases of our main results.


Author(s):  
Kottakkaran Sooppy Nisar ◽  
Gauhar Rahman ◽  
Shahid Mubeen

A new generalization of extended beta function and its various properties,integral representations and distribution are given in this paper. In addition, we establishthe generalization of extended hypergeometric and con uent hypergeometric functionsusing the newly extended beta function. The properties these extended and con uenthypergeometric functions such as integral representations, Mellin transformations, dif-ferentiation formulas, transformation and summation formulas are also investigated.


Author(s):  
Salem Saleh Barahmah

The purpose of the present paper is to introduce a new extension of extended Beta function by product of two Mittag-Leffler functions. Further, we present certain results including summation formulas, integral representations and Mellin transform.


2011 ◽  
Vol 33 (2) ◽  
pp. 187-206 ◽  
Author(s):  
Dong-Myung Lee ◽  
Arjun K. Rathie ◽  
Rakesh K. Parmar ◽  
Yong-Sup Kim

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Ankita Chandola ◽  
Rupakshi Mishra Pandey ◽  
Ritu Agarwal ◽  
Sunil Dutt Purohit

AbstractRecently, various forms of extended beta function have been proposed and presented by many researchers. The principal goal of this paper is to present another expansion of beta function using Appell series and Lauricella function and examine various properties like integral representation and summation formula. Statistical distribution for the above extension of beta function has been defined, and the mean, variance, moment generating function and cumulative distribution function have been obtained. Using the newly defined extension of beta function, we build up the extension of hypergeometric and confluent hypergeometric functions and discuss their integral representations and differentiation formulas. Further, we define a new extension of Riemann–Liouville fractional operator using Appell series and Lauricella function and derive its various properties using the new extension of beta function.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1715
Author(s):  
Ghazi S. Khammash ◽  
Praveen Agarwal ◽  
Junesang Choi

Various k-special functions such as k-gamma function, k-beta function and k-hypergeometric functions have been introduced and investigated. Recently, the k-gamma function of a matrix argument and k-beta function of matrix arguments have been presented and studied. In this paper, we aim to introduce an extended k-gamma function of a matrix argument and an extended k-beta function of matrix arguments and investigate some of their properties such as functional relations, inequality, integral formula, and integral representations. Also an application of the extended k-beta function of matrix arguments to statistics is considered.


Analysis ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Showkat Ahmad Dar ◽  
R. B. Paris

Abstract In this paper, we obtain a ( p , ν ) {(p,\nu)} -extension of Srivastava’s triple hypergeometric function H B ⁢ ( ⋅ ) {H_{B}(\,\cdot\,)} , by using the extended beta function B p , ν ⁢ ( x , y ) {B_{p,\nu}(x,y)} introduced in [R. K. Parmar, P. Chopra and R. B. Paris, On an extension of extended beta and hypergeometric functions, J. Class. Anal. 11 2017, 2, 91–106]. We give some of the main properties of this extended function, which include several integral representations involving Exton’s hypergeometric function, the Mellin transform, a differential formula, recursion formulas and a bounded inequality.


Author(s):  
Dimiter Prodanov

The manuscript surveys the special functions of the Fox-Wright type. These functions are generalizations of the hypergeometric functions. Notable representatives of the type are the Mittag-Leffler functions and the Wright function. The integral representations of such functions are given and the conditions under which these function can be represented by simpler functions are demonstrated. The connection with generalized fractional differential and integral operators is demonstrated and discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Vandana Palsaniya ◽  
Ekta Mittal ◽  
Sunil Joshi ◽  
D. L. Suthar

The purpose of this research is to provide a systematic review of a new type of extended beta function and hypergeometric function using a confluent hypergeometric function, as well as to examine various belongings and formulas of the new type of extended beta function, such as integral representations, derivative formulas, transformation formulas, and summation formulas. In addition, we also investigate extended Riemann–Liouville (R-L) fractional integral operator with associated properties. Furthermore, we develop new beta distribution and present graphically the relation between moment generating function and ℓ .


Sign in / Sign up

Export Citation Format

Share Document