scholarly journals Adipose tissue expandability, lipotoxicity and the metabolic syndrome.

IBJ Plus ◽  
2019 ◽  
Author(s):  
◽  
Antonio Vidal-Puig
Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Kaivan Khavandi ◽  
Adam Greenstein ◽  
Sarah Withers ◽  
Kazuhiko Sonoyama ◽  
Sarah Lewis ◽  
...  

In order to investigate the contribution of perivascular adipose tissue (PVAT) to arterial function, a total of 55 small arteries harvested from 35 skin biopsies of patients with Metabolic Syndrome and matched controls were mounted as ring preparations in a wire myograph. Contractility to cumulative doses of Norepinephrine in the presence or absence of PVAT showed an anticontractile effect in arteries from healthy volunteers (p=0.009), which was lost in patients with Metabolic Syndrome. Bioassay studies confirmed that PVAT releases a hydrophilic anticontractile factor in health, which is absent in obesity. Using a soluble fragment of the human Type 1 receptor, we identified that the anticontractile factor was adiponectin, which is the sole mediator of vasodilation, acting by increasing endothelial bioavailability of nitric oxide. Significant endothelial dysfunction was observed in patients with Metabolic Syndrome (p<0.001). Quantitative image analysis of adipose tissue revealed significantly increased adipocyte cell size in patients with Metabolic Syndrome, compared with healthy controls (p<0.006). There was immunohistochemical evidence of inflammation with upregulation of TNF-alpha receptor 1 in these patients (p<0.001). Application of exogenous TNF-alpha abolished the anticontractile effect of PVAT by reducing adiponectin bioavailability. Oxidative stress also induced by cytokines TNF-alpha and IL-6 but not IL-1, reduced adiponectin production from PVAT and increased basal tone. When the obese microenvironment was replicated in vitro by inflicting hypoxia on PVAT, adiponectin activity was lost but then rescued by incubation with cytokine antagonists. Further application of the adiponectin receptor fragment abolished PVAT relaxation. We conclude that in healthy arteries, PVAT releases adiponectin which reduces vascular tone. In obesity, this is lost by a cascade of adipocyte hypertrophy, hypoxia, inflammation and oxidative stress. The resulting vasoconstriction contributes to hypertension, hypertriglyceridaemia and insulin resistance. Direct targeting of adiponectin release from PVAT therefore provides a novel therapeutic opportunity in the Metabolic Syndrome.


2018 ◽  
Vol 33 (2) ◽  
pp. 1899-1910 ◽  
Author(s):  
Guanmin Meng ◽  
Xiaoyun Tang ◽  
Zelei Yang ◽  
Yuan Yuan Zhao ◽  
Jonathan M. Curtis ◽  
...  

2017 ◽  
Vol 93 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Yu Meng ◽  
Alfonso Eirin ◽  
Xiang-Yang Zhu ◽  
Hui Tang ◽  
Pritha Chanana ◽  
...  

2018 ◽  
Vol 27 (10) ◽  
pp. 1495-1503 ◽  
Author(s):  
Y. Meng ◽  
A. Eirin ◽  
X.-Y. Zhu ◽  
H. Tang ◽  
L.J. Hickson ◽  
...  

Mesenchymal stem cells (MSCs) constitute an important repair system, but may be impaired by exposure to cardiovascular risk factors. Consequently, adipose tissue-derived MSCs from pigs with the metabolic syndrome (MetS) show decreased vitality. A growing number of microRNAs (miRNAs) are recognized as key modulators of senescence, but their role in regulating senescence in MSC in MetS is unclear. We tested the hypothesis that MetS upregulates in MSC expression of miRNAs that can serve as post-transcriptional regulators of senescence-associated (SA) genes. MSCs were collected from swine abdominal adipose tissue after 16 weeks of Lean or Obese diet ( n = 6 each). Next-generation miRNA sequencing (miRNA-seq) was performed to identify miRNAs up-or down-regulated in MetS-MSCs compared with Lean-MSCs. Functional pathways of SA genes targeted by miRNAs were analyzed using gene ontology. MSC senescence was evaluated by p16 and p21 immunoreactivity, H2AX protein expression, and SA-β-Galactosidase activity. In addition, gene expression of p16, p21, MAPK3 (ERK1) and MAPK14, and MSC migration were studied after inhibition of SA-miR-27b. Senescence biomarkers were significantly elevated in MetS-MSCs. We found seven upregulated miRNAs, including miR-27b, and three downregulated miRNAs in MetS-MSCs, which regulate 35 SA genes, particularly MAPK signaling. Inhibition of miR-27b in cultured MSCs downregulated p16 and MARP3 genes, and increased MSC migration. MetS modulates MSC expression of SA-miRNAs that may regulate their senescence, and the p16 pathway seems to play an important role in MetS-induced MSC senescence.


Sign in / Sign up

Export Citation Format

Share Document