scholarly journals Finite Element Analysis and Experimental Validation of Residual Stress Analysis in T-Welded Zone of Aluminum Alloy 6061-T6

Author(s):  
Rohan Rajaram Prabhu et al., Rohan Rajaram Prabhu et al., ◽  
Author(s):  
Joong-Hyun Seo ◽  
Jong-Sung Kim

In this study, three-dimensional finite element residual stress analysis of a small bore penetration nozzle was performed using the commercial finite element program, ABAQUS. Comparing with the real PWSCC (primary water stress corrosion crack) history, it is identified that the finite element analysis is valid in the viewpoint of PWSCC initiation and growth. Parametric finite element residual stress analysis was systematically implemented in order to investigate effect of the geometric variables including nozzle outer diameter/thickness, buttering thickness, angle between central axes of head & nozzle, etc. on the residual stresses. As a result of the parametric analysis, it is found that effects of the nozzle outer diameter and the angle between central axes of head & nozzle on the maximum residual stress generation location and magnitude are significant while effects of the head thickness, the buttering thickness, the weld depth, and the nozzle thickness to outer diameter are insignificant.


Author(s):  
Gürkan İrsel

In this study, the total algorithm of the strength-based design of the system for mass production has been developed. The proposed algorithm, which includes numerical, analytical, and experimental studies, was implemented through a case study on the strength-based structural design and fatigue analysis of a tractor-mounted sunflower stalk cutting machine (SSCM). The proposed algorithm consists of a systematic engineering approach, material selection and testing, design of the mass criteria suitability, structural stress analysis, computer-aided engineering (CAE), prototype production, experimental validation studies, fatigue calculation based on an FE model and experimental studies (CAE-based fatigue analysis), and an optimization process aimed at minimum weight. Approximately 85% of the system was designed using standard commercially available cross-section beams and elements using the proposed algorithm. The prototype was produced, and an HBM data acquisition system was used to collect the strain gage output. The prototype produced was successful in terms of functionality. Two- and three-dimensional mixed models were used in the structural analysis solution. The structural stress analysis and experimental results with a strain gage were 94.48% compatible in this study. It was determined using nCode DesignLife software that fatigue damage did not occur in the system using the finite element analysis (FEA) and experimental data. The SSCM design adopted a multi-objective genetic algorithm (MOGA) methodology for optimization with ANSYS. With the optimization solved from 422 iterations, a maximum stress value of 57.65 MPa was determined, and a 97.72 kg material was saved compared to the prototype. This study provides a useful methodology for experimental and advanced CAE techniques, especially for further study on complex stress, strain, and fatigue analysis of new systematic designs desired to have an optimum weight to strength ratio.


2006 ◽  
Vol 524-525 ◽  
pp. 549-554 ◽  
Author(s):  
W.R. Mabe ◽  
W.J. Koller ◽  
A.M. Holloway ◽  
P.R. Stukenborg

This paper presents the results of an experimental validation of the deep hole drill residual stress measurement method. A validation test specimen was fabricated and plastically loaded to impose a permanent residual stress field within the specimen. The validation test specimen was designed to provide a variety of stress profiles as a function of location within the specimen. A finite element analysis of the validation test specimen was performed in order to provide a reference solution for comparison to the deep hole drill experimental results. Results from experimental testing of the validation test specimen agree well with the finite element analysis reference solution, thereby providing further validation of the deep hole drill method to measure residual stresses.


Author(s):  
Allen Perkins ◽  
Wenhua Yang ◽  
Yucheng Liu ◽  
Lei Chen ◽  
Caleb Yenusah

Abstract Porosity has been known to have a profound effect on a material’s mechanical properties, often weakening the material. Highly porous metallic materials prove troublesome for supporting a load-based structure due to the voids that are present throughout the microstructure of the material. In this study, the previously developed ISV damage plasticity model is used to investigate the effect of the porosity on aluminum alloy 6061-T651 and magnesium alloy AZ31 through finite element analysis (FEA). It is determined that porosity has a profound impact on the strength of the aluminum alloy and much lesser effect on the magnesium alloy. Porosity is also shown to affect other properties of the materials, such as the hardness and pore growth.


2012 ◽  
Vol 525-526 ◽  
pp. 105-108
Author(s):  
Zhe Feng Wang ◽  
Yao Yang Hu

The residual stress distributions of 7075 aluminum alloy rectangular thick plates after quench-hardening had been simulated firstly, then all the results were presented and compared with each other. Some deep theoretical analyses were also carried out. The results show that complicated residual stress distribution regularities in aluminum alloy thick plates can be obtained by the finite element analysis successfully.


Sign in / Sign up

Export Citation Format

Share Document