scholarly journals Using of bioinformatics and computer morphometry in study of Fusarium spp. causing potato dry rot

2016 ◽  
Vol 5 (3) ◽  
pp. 515-522
Author(s):  
Nadezhda Zhilinskaia ◽  
Julia Bazarnova ◽  
Aleksandr Shleikin ◽  
Liudmyla Peshuk ◽  
Oleg Galenko
Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 843-843
Author(s):  
A. Merlington ◽  
L. E. Hanson ◽  
R. Bayma ◽  
K. Hildebrandt ◽  
L. Steere ◽  
...  

Fusarium dry rot of potato (Solanum tuberosum L.) is a postharvest disease caused by several Fusarium spp. Thirteen Fusarium spp. have been implicated in dry rot of potatoes worldwide. Among them, 11 species have been reported causing potato dry rot of seed tubers in the northern United States (1). Historically, Fusarium sambucinum was the predominant species in Michigan potato production (3). Dry rot symptomatic tubers (n = 972) were collected from Michigan commercial potato storage facilities in 2011 and 2012 to determine the composition of Fusarium spp. Sections were cut from the margins of necrotic tissue with a sterile scalpel and surface disinfested in 0.6% sodium hypochlorite for 10 s, rinsed twice in sterile distilled water, and dried on sterile filter paper. The tissue sections were plated on half-strength potato dextrose agar (PDA) amended with 0.5 g/liter of streptomycin sulfate. Dishes were incubated at 23°C in the dark for 7 days. Putative Fusarium isolates were transferred onto water agar and hyphal tips from the margin of actively growing cultures were removed with a sterile scalpel and plated to carnation leaf agar (CLA) and half-strength PDA to generate pure cultures. Seven hundred and thirty Fusarium isolates were collected using these techniques. Preliminary identification of the 730 isolates was based on colony and conidial morphology on PDA and CLA, respectively. While F. oxysporum and F. sambucinum were isolated as expected from prior reports (3), three isolates of F. proliferatum were also identified. On CLA, macroconidia of F. proliferatum were sparse, slender, and mostly straight, with three to five septae (4). Microconidia were abundant, usually single celled, oval or club-shaped in short chains or false heads on monophialides and polyphialides (4), and chlamydospores were absent. On PDA, abundant white mycelium was produced and turned violet with age. Koch's postulates were confirmed through pathogenicity testing on disease-free potato tubers cvs. Atlantic and Russet Norkotah. Tubers were surface disinfested for 10 min in 0.6% sodium hypochlorite and rinsed twice in distilled water. Three tubers of each cultivar per isolate were wounded at the apical end of the tuber to a depth of 4 to 10 mm with a 4 mm diameter cork-borer. Tubers were inoculated by inserting a mycelial plug from a 7-day-old culture grown on PDA into the wound and incubating the tubers at 20°C for 21 days. All Fusarium isolates were tested. Control tubers were inoculated by inserting a water agar plug. Pathogenicity and virulence testing were replicated three times and repeated. Tubers inoculated with F. proliferatum developed typical potato dry rot symptoms but no dry rot symptoms were observed on control tubers. Fusarium proliferatum was re-isolated from symptomatic tubers, confirming Koch's postulates. To our knowledge, this is the first report of F. proliferatum causing potato dry rot in Michigan. References: (1) E. Gachango et al. Plant Dis. 96:1767. (2) D. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004. (3) M. L. Lacy and R. Hammerschmidt. Fusarium dry rot. Extension Bulletin. Retrieved from http://web1.msue.msu.edu/msue/iac/onlinepubs/pubs/E/E2448POT, 23 May 2010. (4) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Wiley-Blackwell, Hoboken, NJ, 2006.


Author(s):  
Nadia Azil ◽  
Emil Stefańczyk ◽  
Sylwester Sobkowiak ◽  
Saliha Chihat ◽  
Houda Boureghda ◽  
...  

AbstractFusarium is one of the most important genera of phytopathogenic fungi, causing potato wilt in the field and potato tuber dry rot during storage. The objectives of this study were to identify Fusarium species associated with both potato diseases in different growing regions in Algeria, and to assess their pathogenicity. Among the 152 isolates collected from symptomatic potato plants and tubers in different provinces in Algeria, 13 species of Fusarium and Neocosmospora were identified. Among these three species were isolated only from plants showing symptoms of Fusarium potato wilt (F. oxysporum, F. venenatum, Neocosmospora solani). Two species (F. culmorum, N. tonkinensis) and an isolate of Neocosmospora sp. were found exclusively in tubers with potato dry rot and the remaining ones (F. redolens, F. cf. tricinctum, F. sambucinum, F. cf. incarnatum-equiseti, F. nygamai, F. brachygibbosum and N. falciformis) were associated with both sample types. Fusarium sambucinum was the most frequent species (52.6% of isolates). Fusarium oxysporum and F. nygamai isolates were the most aggressive in the potato wilt pathogenicity test, and F. sambucinum isolates were the most aggressive in the potato tuber pathogenicity test. This is the first study identifying and characterizing potato dry rot and potato wilt pathogens in Algeria.


Plant Disease ◽  
2011 ◽  
Vol 95 (2) ◽  
pp. 228-228 ◽  
Author(s):  
E. Gachango ◽  
W. Kirk ◽  
L. Hanson ◽  
A. Rojas ◽  
P. Tumbalam ◽  
...  

Fusarium dry rot of potato (Solanum tuberosum) is a postharvest disease caused by several Fusarium spp. Dry rot is managed primarily by reducing tuber bruising and promoting rapid wound healing. Dry rot symptomatic tubers were collected from Michigan seed lots in 2009 and 2010. The isolates may not have been exposed to fludioxonil because currently applications are restricted to seed not intended for seed production (3). Small sections were cut from the margins of necrotic regions with a scalpel, surface sterile in 10% sodium hypochlorite for 10 s, rinsed twice in sterile distilled water, and blotted with sterile filter paper. The tissue pieces were plated on half-strength potato dextrose agar (PDA) amended with 0.5 g/liter of streptomycin sulfate. The dishes were incubated at 23°C for 5 to 7 days. Cultures resembling Fusarium spp. were transferred onto water agar and hyphal tips from the margin of actively growing isolates were removed with a sterile probe and plated either on carnation leaf agar (CLA) or on half-strength PDA to generate pure cultures. Fusarium isolates were obtained and used for further studies. Among them, 54 were identified as Fusarium oxysporum and 23 as F. sambucinum. Identification was based on colony and conidial morphology on PDA and CLA, respectively. The identity was confirmed through DNA extraction followed by amplification and sequencing of the translation elongation factor (EF-1α) gene region. The Fusarium-ID v. (2) and the NCBI database were used to obtain the closest match to previously sequenced materials. Pathogenicity testing was done on disease-free potato tubers, cv. FL 1879. Tubers were surface sterilized for 10 min in 10% sodium hypochlorite and rinsed twice in distilled water. Three tubers per isolate were injected with 20 μl of a conidial suspension (106 conidia/ml) made from cultures grown on PDA for 7 days. Control tubers were injected with 20 μl of sterile distilled water. All tubers inoculated with F. sambucinum and F. oxysporum developed typical potato dry rot symptoms consisting of dry brown decay lesions. F. sambucinum and F. oxysporum were reisolated from all symptomatic tubers. An effective concentration for 50% reduction in growth (EC50) was determined for each F. sambucinum and F. oxysporum isolate for thiabendazole (TBZ), fludioxonil, and difenoconazole using the spiral gradient endpoint method (1). Sensitive and resistant F. sambucinum and F. oxysporum isolates were reported. Fifteen isolates of F. sambucinum and thirty-four of F. oxysporum were resistant to fludioxonil with EC50 greater than 130 mg/liter. The remainder was sensitive to fludioxonil with EC50 ranging from 0.8 to 4.9 mg/liter. To our knowledge, this is the first report of resistance to fludioxonil in isolates of F. sambucinum and F. oxysporum in Michigan. Fusarium insensitivity in laboratory studies may not translate directly to commercial production. This disparity may result from interactions not experienced in mixed populations or within a living host. There has been no compelling evidence to suggest that fludioxonil has failed to perform because of insensitivity to Fusarium. The occurrence of such isolated strains necessitates the development and registration of partner chemistries that can preempt any future concerns on lack of performance of products in use. References: (1) H. Förster et al. Phytopathology 94:163, 2004. (2) D. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004. (3) R. D. Peters et al. Plant Dis. 92:172, 2008.


2021 ◽  
Vol 113 ◽  
pp. 101601
Author(s):  
Jie Ren ◽  
Jie Tong ◽  
Peihua Li ◽  
Xiaoqing Huang ◽  
Pan Dong ◽  
...  

2005 ◽  
Vol 95 (12) ◽  
pp. 1462-1471 ◽  
Author(s):  
D. W. Cullen ◽  
I. K. Toth ◽  
Y. Pitkin ◽  
N. Boonham ◽  
K. Walsh ◽  
...  

Specific and sensitive quantitative diagnostics, based on real-time (TaqMan) polymerase chain reaction (PCR) and PCR enzyme-linked immunosorbent assay, were developed to detect dry-rot-causing Fusarium spp. (F. avenaceum, F. coeruleum, F. culmorum, and F. sulphureum). Each assay detected Fusarium spp. on potato seed stocks with equal efficiency. Four potato stocks, sampled over two seed generations from Scottish stores, were contaminated with F. avenaceum, F. sulphureum, F. culmorum, F. coeruleum or a combination of species, and there was a general trend towards increased Fusarium spp. contamination in the second generation of seed sampled. F. sulphureum and F. coeruleum caused significantly (P < 0.05) more disease in storage than the other species when disease-free tubers of potato cvs. Spunta and Morene were inoculated at a range of inoculum concentrations (0, 104, 105, and 106 conidia/ml). Increased DNA levels were correlated with increased disease severity between 8 and 12 weeks of storage. The threshold inoculum levels resulting in significant disease development on both cultivars were estimated to be 104 conidia/ml for F. sulphureum and 105 conidia/ml for F. coeruleum. To study the effect of soil infestation and harvest date on disease incidence, seed tubers of cvs. Morene and Spunta were planted in a field plot artificially infested with the four Fusarium spp. F. culmorum and F. sulphureum were detected in soil taken from these plots at harvest, and F. sulphureum DNA levels increased significantly (P < 0.05) at the final harvest. All four Fusarium spp. were detected in progeny tubers. There was a trend toward higher levels of F. culmorum detected in progeny tubers at the earliest harvest date, and higher levels of F. sulphureum at the final harvest. The use of diagnostic assays to detect fungal storage rot pathogens and implications for disease control strategies are discussed.


2016 ◽  
Vol 94 (3) ◽  
pp. 266-269 ◽  
Author(s):  
Virupaksh U Patil ◽  
Vanishree G. ◽  
Vinay Sagar ◽  
SK Chakrabarti

Sign in / Sign up

Export Citation Format

Share Document