scholarly journals First Report of in vitro Fludioxonil-Resistant Isolates of Fusarium spp. Causing Potato Dry Rot in Michigan

Plant Disease ◽  
2011 ◽  
Vol 95 (2) ◽  
pp. 228-228 ◽  
Author(s):  
E. Gachango ◽  
W. Kirk ◽  
L. Hanson ◽  
A. Rojas ◽  
P. Tumbalam ◽  
...  

Fusarium dry rot of potato (Solanum tuberosum) is a postharvest disease caused by several Fusarium spp. Dry rot is managed primarily by reducing tuber bruising and promoting rapid wound healing. Dry rot symptomatic tubers were collected from Michigan seed lots in 2009 and 2010. The isolates may not have been exposed to fludioxonil because currently applications are restricted to seed not intended for seed production (3). Small sections were cut from the margins of necrotic regions with a scalpel, surface sterile in 10% sodium hypochlorite for 10 s, rinsed twice in sterile distilled water, and blotted with sterile filter paper. The tissue pieces were plated on half-strength potato dextrose agar (PDA) amended with 0.5 g/liter of streptomycin sulfate. The dishes were incubated at 23°C for 5 to 7 days. Cultures resembling Fusarium spp. were transferred onto water agar and hyphal tips from the margin of actively growing isolates were removed with a sterile probe and plated either on carnation leaf agar (CLA) or on half-strength PDA to generate pure cultures. Fusarium isolates were obtained and used for further studies. Among them, 54 were identified as Fusarium oxysporum and 23 as F. sambucinum. Identification was based on colony and conidial morphology on PDA and CLA, respectively. The identity was confirmed through DNA extraction followed by amplification and sequencing of the translation elongation factor (EF-1α) gene region. The Fusarium-ID v. (2) and the NCBI database were used to obtain the closest match to previously sequenced materials. Pathogenicity testing was done on disease-free potato tubers, cv. FL 1879. Tubers were surface sterilized for 10 min in 10% sodium hypochlorite and rinsed twice in distilled water. Three tubers per isolate were injected with 20 μl of a conidial suspension (106 conidia/ml) made from cultures grown on PDA for 7 days. Control tubers were injected with 20 μl of sterile distilled water. All tubers inoculated with F. sambucinum and F. oxysporum developed typical potato dry rot symptoms consisting of dry brown decay lesions. F. sambucinum and F. oxysporum were reisolated from all symptomatic tubers. An effective concentration for 50% reduction in growth (EC50) was determined for each F. sambucinum and F. oxysporum isolate for thiabendazole (TBZ), fludioxonil, and difenoconazole using the spiral gradient endpoint method (1). Sensitive and resistant F. sambucinum and F. oxysporum isolates were reported. Fifteen isolates of F. sambucinum and thirty-four of F. oxysporum were resistant to fludioxonil with EC50 greater than 130 mg/liter. The remainder was sensitive to fludioxonil with EC50 ranging from 0.8 to 4.9 mg/liter. To our knowledge, this is the first report of resistance to fludioxonil in isolates of F. sambucinum and F. oxysporum in Michigan. Fusarium insensitivity in laboratory studies may not translate directly to commercial production. This disparity may result from interactions not experienced in mixed populations or within a living host. There has been no compelling evidence to suggest that fludioxonil has failed to perform because of insensitivity to Fusarium. The occurrence of such isolated strains necessitates the development and registration of partner chemistries that can preempt any future concerns on lack of performance of products in use. References: (1) H. Förster et al. Phytopathology 94:163, 2004. (2) D. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004. (3) R. D. Peters et al. Plant Dis. 92:172, 2008.

Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 843-843
Author(s):  
A. Merlington ◽  
L. E. Hanson ◽  
R. Bayma ◽  
K. Hildebrandt ◽  
L. Steere ◽  
...  

Fusarium dry rot of potato (Solanum tuberosum L.) is a postharvest disease caused by several Fusarium spp. Thirteen Fusarium spp. have been implicated in dry rot of potatoes worldwide. Among them, 11 species have been reported causing potato dry rot of seed tubers in the northern United States (1). Historically, Fusarium sambucinum was the predominant species in Michigan potato production (3). Dry rot symptomatic tubers (n = 972) were collected from Michigan commercial potato storage facilities in 2011 and 2012 to determine the composition of Fusarium spp. Sections were cut from the margins of necrotic tissue with a sterile scalpel and surface disinfested in 0.6% sodium hypochlorite for 10 s, rinsed twice in sterile distilled water, and dried on sterile filter paper. The tissue sections were plated on half-strength potato dextrose agar (PDA) amended with 0.5 g/liter of streptomycin sulfate. Dishes were incubated at 23°C in the dark for 7 days. Putative Fusarium isolates were transferred onto water agar and hyphal tips from the margin of actively growing cultures were removed with a sterile scalpel and plated to carnation leaf agar (CLA) and half-strength PDA to generate pure cultures. Seven hundred and thirty Fusarium isolates were collected using these techniques. Preliminary identification of the 730 isolates was based on colony and conidial morphology on PDA and CLA, respectively. While F. oxysporum and F. sambucinum were isolated as expected from prior reports (3), three isolates of F. proliferatum were also identified. On CLA, macroconidia of F. proliferatum were sparse, slender, and mostly straight, with three to five septae (4). Microconidia were abundant, usually single celled, oval or club-shaped in short chains or false heads on monophialides and polyphialides (4), and chlamydospores were absent. On PDA, abundant white mycelium was produced and turned violet with age. Koch's postulates were confirmed through pathogenicity testing on disease-free potato tubers cvs. Atlantic and Russet Norkotah. Tubers were surface disinfested for 10 min in 0.6% sodium hypochlorite and rinsed twice in distilled water. Three tubers of each cultivar per isolate were wounded at the apical end of the tuber to a depth of 4 to 10 mm with a 4 mm diameter cork-borer. Tubers were inoculated by inserting a mycelial plug from a 7-day-old culture grown on PDA into the wound and incubating the tubers at 20°C for 21 days. All Fusarium isolates were tested. Control tubers were inoculated by inserting a water agar plug. Pathogenicity and virulence testing were replicated three times and repeated. Tubers inoculated with F. proliferatum developed typical potato dry rot symptoms but no dry rot symptoms were observed on control tubers. Fusarium proliferatum was re-isolated from symptomatic tubers, confirming Koch's postulates. To our knowledge, this is the first report of F. proliferatum causing potato dry rot in Michigan. References: (1) E. Gachango et al. Plant Dis. 96:1767. (2) D. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004. (3) M. L. Lacy and R. Hammerschmidt. Fusarium dry rot. Extension Bulletin. Retrieved from http://web1.msue.msu.edu/msue/iac/onlinepubs/pubs/E/E2448POT, 23 May 2010. (4) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Wiley-Blackwell, Hoboken, NJ, 2006.


Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1194-1194 ◽  
Author(s):  
E. Gachango ◽  
W. Kirk ◽  
L. Hanson ◽  
A. Rojas ◽  
P. Tumbalam

Fusarium dry rot of potato (Solanum tuberosum L.) is a postharvest disease caused by several Fusarium species and is of worldwide importance. Thirteen species of Fusarium have been implicated in fungal dry rots of potatoes worldwide. Among them, eight species have been reported in the northern United States (2). In Michigan potato production, F. sambucinum was the predominant species reported to be affecting seed potato in storage and causing seed piece decay after planting (3). Some previous identifications of F. sambucinum as dry rot may have been F. torulosum since F. torulosum was previously classified within F. sambucinum (4). To further investigate this, dry rot symptomatic tubers were collected from Michigan seed lots in the summers of 2009 and 2010. Small sections from the margins of necrotic regions were cut with a scalpel, surface sterilized in 0.5% sodium hypochlorite for 10 s, rinsed twice in sterile distilled water, and blotted with sterile filter paper. The tissue pieces were plated on half-strength potato dextrose agar (PDA) amended with 0.5 g/liter of streptomycin sulfate and incubated at 23°C for 5 to 7 days. Cultures resembling Fusarium species were transferred onto water agar, and single hyphal tips from actively growing isolates were removed and plated either on carnation leaf agar (CLA) or on half-strength PDA to generate pure cultures. Among the Fusarium isolates obtained, five isolates were identified as F. torulosum (GenBank Accessions Nos. JF803658–JF803660). Identification was based on colony and conidial morphology on PDA and CLA, respectively. These features included slow growth (2.8 ± 0.2 cm in 5 days), white mycelium that became pigmented with age, narrow concentric rings, red or white pigmentation on agar, macroconidia (32.4 ± 0.4 μm average length) with five septa, a pointed apical cell, and a foot-shaped basal cell (4). The identity was confirmed through DNA extraction followed by amplification and sequencing of the translation elongation factor (EF-1α) gene region (1). The Fusarium-ID.v (1) and the NCBI database were used to obtain the closest match (99%) to previously sequenced materials (GenBank Accession No. AJ543611). Pathogenicity testing was done on disease-free potato tubers cv. Red Norland. Tubers were surface sterilized for 10 min in 0.5% sodium hypochlorite and rinsed twice in distilled water. Three tubers per isolate were injected with 20 μl of a conidial suspension (106 conidia/ml) made from F. torulosum cultures grown on PDA for 7 to 10 days. Control tubers were injected with 20 μl of sterile distilled water. All tubers inoculated with F. torulosum developed typical potato dry rot symptoms consisting of a brown and dry decay. There was no disease incidence on the control tubers. F. torulosum was reisolated from the symptomatic tubers. To our knowledge, this is the first report of F. torulosum causing potato dry rot in the United States. References: (1) D. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004. (2) L. E. Hanson et al. Phytopathology 86:378, 1996. (3) M. L. Lacy and R. Hammerschmidt. Fusarium dry rot. Extension Bulletin. Retrieved from http://web1.msue.msu.edu/msue/iac/onlinepubs/pubs/E/E2448POT , 23 May 2010. (4) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Wiley-Blackwell, Hoboken, NJ, 2006.


Plant Disease ◽  
2005 ◽  
Vol 89 (1) ◽  
pp. 105-105 ◽  
Author(s):  
S. Ali ◽  
V. V. Rivera ◽  
G. A. Secor

Fusarium dry rot of potato can be caused by several species of Fusarium, but F. sambucinum is considered the primary cause in stored potatoes in North America and Europe (2). Potato tubers of cvs. Shepody and Russet Burbank with severe dry rot were collected from a commercial processing storage facility in central North Dakota during 2003–2004. Pathogen isolations were made from infected tubers on one-half strength acidified potato dextrose agar (APDA). Only F. graminearum was isolated from all rotted tubers used. Identification was based on colony morphology and conidial and perithecial characteristics, which included a carmine coloration of the underside of the agar and white fluffy mycelium on APDA, the presence of black perithecia on carnation leaf agar, and large distinctive macroconidia (1). The identity was confirmed by the Fusarium Research Institute at Pennsylvania State University. Pathogenicity was tested in potato tubers and greenhouse-grown potato plants cv. Atlantic. Nine tubers were wounded by removal of a plug of tissue with a cork borer, 3 mm in diameter and 5 mm deep, and inoculated by placing either 100 μl of a conidial suspension (5 × 104 conidia per ml) from a 7-day-old culture or a mycelial plug, 3 mm in diameter, from a 7-day-old culture in the wound. Nine tubers wounded and treated with either sterile distilled water or one-half strength APDA served as controls. Plant inoculations were performed by cutting a slit in the lower stem with a sterile scalpel and placing a cotton collar saturated with a conidial suspension (5 × 104 conidia per ml) around the wound and held in place with a clothespin. Four plants were inoculated with a conidial suspension, and four plants were treated with sterile distilled water. All tubers inoculated with either Fusarium treatment developed typical potato dry rot symptoms consisting of a brown, dry decay with mycelium lined cavities, and F. graminearum was reisolated from all symptomatic tubers. The control tubers did not develop symptoms. No symptoms developed in any of the greenhouse inoculated plants. Fifteen isolates were tested for sensitivity to thiabendazole, and all were sensitive with EC50 (50% effective concentration) values ranging from 0.8 to 3.7 μl/ml. The results indicate that F. graminearum can cause dry rot of potato, and to our knowledge, this is the first report of F. graminearum as a cause of potato dry rot. These results have epidemiological implications in the persistence, spread, and management of F. graminearum in cereals and potatoes, since potato is often used in rotation with other hosts of F. graminearum, including wheat, barley, and corn. References: (1) P. E. Nelson et al. Pages 118–119 in: Fusarium Species: An Illustrated Manual for Identification. The Pennsylvania State University, University Park and London, 1983. (2) G. A. Secor and B. Salas. Fusarium dry rot and fusarium wilt. Pages 23–25 in: Compendium of Potato Diseases. 2nd ed. W. R. Stevenson, R. Loria, G. D. Franc, and D. P. Weingartner, eds. The American Phytopathological Society, St. Paul, MN, 2001.


Plant Disease ◽  
2001 ◽  
Vol 85 (7) ◽  
pp. 804-804 ◽  
Author(s):  
S. J. Pethybridge ◽  
F. S. Hay ◽  
C. R. Wilson ◽  
L. J. Sherriff ◽  
G. W. Leggett

The hop (Humulus lupulus L.) is a dioecious climbing plant, cultivated for its resins, which are produced in the cone, used primarily for the bittering of beer. In Australia, hops are grown in the states of Victoria and Tasmania. In late summer 2001, necrotic lesions were observed on the tips of bracts and bracteoles of developing cones at three hop farms in Tasmania. The necrotic area varied between 1 and 25% of the bracts and bracteoles, and in some cases progressed throughout the entire hop cone. Pieces of infected hop cones were surface sterilized for one minute in 2% sodium hypochlorite, plated on 2% water agar, and incubated at 22 ± 2°C. The most frequently isolated fungi (total number of isolations = 60) were transferred to 2% water agar and potato dextrose agar. In 90% of cases, the isolated fungus was Alternaria alternata (Fr.:Fr.) Keissl, as identified by M. Priest, NSW Agriculture, Australia. The pathogenicity of A. alternata was determined on detached, freshly picked cones of hop cultivar “Nugget.” Cones (n = 25) were inoculated with a conidial suspension of the fungus (1,000 spores per ml) and incubated at room temperature in a sealed container on plastic mesh over tissue wetted with sterile distilled water. Symptoms first appeared three days after inoculation as necrotic tips of bracts and bracteoles, and within 10 days the entire cone had become necrotic. Symptoms were more severe in vitro compared to in the field. This was probably due to the maintenance of detached cones under constant high relative humidity. Disease symptoms did not appear on cones inoculated with sterile distilled water. The pathogen was reisolated from inoculated cones, completing Koch's postulates. The pathogenicity of A. alternata to hop cones was reported in the United Kingdom in 1988. To our knowledge, this is the first report of A. alternata on hop cones in Australia. References: (1) P. Darby. Trans. Br. Mycol. Soc. 90:650–653, 1988.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1657-1657 ◽  
Author(s):  
J. H. Wang ◽  
Z. H. Feng ◽  
Z. Han ◽  
S. Q. Song ◽  
S. H. Lin ◽  
...  

Pepper (Capsicum annuum L.) is an important vegetable crop worldwide. Some Fusarium species can cause pepper fruit rot, leading to significant yield losses of pepper production and, for some Fusarium species, potential risk of mycotoxin contamination. A total of 106 diseased pepper fruit samples were collected from various pepper cultivars from seven provinces (Gansu, Hainan, Heilongjiang, Hunan, Shandong, Shanghai, and Zhejiang) in China during the 2012 growing season, where pepper production occurs on approximately 25,000 ha. Pepper fruit rot symptom incidence ranged from 5 to 20% in individual fields. Symptomatic fruit tissue was surface-sterilized in 0.1% HgCl2 for 1 min, dipped in 70% ethanol for 30 s, then rinsed in sterilized distilled water three times, dried, and plated in 90 mm diameter petri dishes containing potato dextrose agar (PDA). After incubation for 5 days at 28°C in the dark, putative Fusarium colonies were purified by single-sporing. Forty-three Fusarium strains were isolated and identified to species as described previously (1,2). Morphological characteristics of one strain were identical to those of F. concentricum. Aerial mycelium was reddish-white with an average growth rate of 4.2 to 4.3 mm/day at 25°C in the dark on PDA. Pigments in the agar were formed in alternating red and orange concentric rings. Microconidia were 0- to 1-septate, mostly 0-septate, and oval, obovoid to allantoid. Macroconidia were relatively slender with no significant curvature, 3- to 5-septate, with a beaked apical cell and a foot-shaped basal cell. To confirm the species identity, the partial TEF gene sequence (646 bp) was amplified and sequenced (GenBank Accession No. KC816735). A BLASTn search with TEF gene sequences in NCBI and the Fusarium ID databases revealed 99.7 and 100% sequence identity, respectively, to known TEF sequences of F. concentricum. Thus, both morphological and molecular criteria supported identification of the strain as F. concentricum. This strain was deposited as Accession MUCL 54697 (http://bccm.belspo.be/about/mucl.php). Pathogenicity of the strain was confirmed by inoculating 10 wounded, mature pepper fruits that had been harvested 70 days after planting the cultivar Zhongjiao-5 with a conidial suspension (1 × 106 spores/ml), as described previously (3). A control treatment consisted of inoculating 10 pepper fruits of the same cultivar with sterilized distilled water. The fruit were incubated at 25°C in a moist chamber, and the experiment was repeated independently in triplicate. Initially, green to dark brown lesions were observed on the outer surface of inoculated fruit. Typical soft-rot symptoms and lesions were observed on the inner wall when the fruit were cut open 10 days post-inoculation. Some infected seeds in the fruits were grayish-black and covered by mycelium, similar to the original fruit symptoms observed at the sampling sites. The control fruit remained healthy after 10 days of incubation. The same fungus was isolated from the inoculated infected fruit using the method described above, but no fungal growth was observed from the control fruit. To our knowledge, this is the first report of F. concentricum causing a pepper fruit rot. References: (1) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, 2006. (2) K. O'Donnell et al. Proc. Nat. Acad. Sci. USA 95:2044, 1998. (3) Y. Yang et al. 2011. Int. J. Food Microbiol. 151:150, 2011.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yujie Zhang ◽  
Wenxiu Sun ◽  
Ping Ning ◽  
Tangxun Guo ◽  
SuiPing Huang ◽  
...  

Papaya (Carica papaya L.) is a rosaceous plant widely grown in China, which is economically important. Anthracnose caused by Colletotrichum sp. is an important postharvest disease, which severely affects the quality of papaya fruits (Liu et al., 2019). During April 2020, some mature papaya fruits with typical anthracnose symptoms were observed in Fusui, Nanning, Guangxi, China with an average of 30% disease incidence (DI) and over 60% DI in some orchards. Initial symptoms of these papayas appeared as watery lesions, which turned dark brown, sunken, with a conidial mass appearing on the lesions under humid and warm conditions. The disease severity varied among fruits, with some showing tiny light brown spots, and some ripe fruits presenting brownish, rounded, necrotic and depressed lesions over part of their surface. Samples from two papaya plantations (107.54°E, 22.38°N) were collected, and brought to the laboratory. Symptomatic diseased tissues were cut into 5 × 5 mm pieces, surface sterilized with 2% (v/v) sodium hypochlorite for 1 minute, and rinsed three times with sterilized water. The pieces were then placed on potato dextrose agar (PDA). After incubation at 25°C in the dark for one week, colonies with uniform morphology were obtained. The aerial mycelium on PDA was white on top side, and concentric rings of salmon acervuli on the underside. A gelatinous layer of spores was observed on part of PDA plates after 7 days at 28°C. The conidia were elliptical, aseptate and hyaline (Zhang et al., 2020). The length and width of 60 conidia were measured for each of the two representative isolates, MG2-1 and MG3-1, and these averaged 13.10 × 5.11 μm and 14.45 × 5.95 μm. DNA was extracted from mycelia of these two isolates with the DNA secure Plant Kit (TIANGEN, Biotech, China). The internal transcribed spacer (ITS), partial actin (ACT), calmodulin (CAL), chitin synthase (CHS), β-tubulin 2 (TUB2) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) regions were amplified by PCR and sequenced. The sequences were deposited into GenBank with accessions MT904003, MT904004, and MT898650 to MT898659. BLASTN analyses against the GenBank database showed that they all had over 99% identity to the type strain of Colletotrichum siamense isolate ICMP 18642 (GenBank accession numbers JX010278, GQ856775, JX009709, GQ856730, JX010410, JX010019) (Weir et al., 2012). A phylogenetic tree based on the combined ITS, ACT, CAL, CHS, TUB2 and GAPDH sequences using the Neighbor-joining algorithm also showed that the isolates were C. siamense. Pathogenicity tests were conducted on 24 mature, healthy and surface-sterilized papaya fruits. On 12 papaya fruits, three well separated wounded sites were made for inoculation, and for each wounded site, six adjacent pinhole wounds were made in a 5-mm-diameter circular area using a sterilized needle. A 10 µl aliquot of 1 × 106 conidia/ml suspension of each of the isolates (MG2-1 and MG3-1) was inoculated into each wound. For each isolate, there were six replicate fruits. The control fruits were inoculated with sterile distilled water. The same inoculation was applied to 12 non-wound papaya fruits. Fruits were then placed in boxes which were first washed with 75% alcohol and lined with autoclaved filter paper moistened with sterilized distilled water to maintain high humidity. The boxes were then sealed and incubated at 28°C. After 10 days, all the inoculated fruits showed symptoms, while the fruits that were mock inoculated were without symptoms. Koch's postulates were fulfilled by re-isolation of C. siamense from diseased fruits. To our knowledge, this is the first report of C. siamense causing anthracnose of papaya in China. This finding will enable better control of anthracnose disease caused by C. siamense on papaya.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1273-1273 ◽  
Author(s):  
X.-M. Luo ◽  
J.-L. Li ◽  
J.-Y. Dong ◽  
A.-P. Sui ◽  
M.-L. Sheng ◽  
...  

China is the world's largest producer country of coptis (Coptis chinensis), the rhizomes of which are used in traditional Chinese medicine. Since 2008, however, root rot symptoms, including severe necrosis and wilting, have been observed on coptis plants in Chongqing, southwestern China. Of the plants examined from March 2011 to May 2013 in 27 fields, 15 to 30% were covered with black necrotic lesions. The leaves of infected plants showed wilt, necrotic lesions, drying, and death. The fibrous roots, storage roots, and rhizomes exhibited brown discoloration and progressive necrosis that caused mortality of the infected plants. Infected plants were analyzed to identify the causal organism. Discoloration of the internal vascular and cortical tissues of the rhizomes and taproots was also evident. Symptomatic taproots of the diseased coptis were surface sterilized in 1% sodium hypochlorite for 2 min, rinsed in sterile distilled water for 2 min, and then air-dried in sterilized atmosphere/laminar flow. Small pieces of disinfested tissue (0.3 cm in length) were transferred to petri dishes containing potato dextrose agar (PDA) supplemented with 125 μg ml–1 streptomycin sulfate and 100 μg ml–1 ampicillin, and incubated for 5 days at 25°C with a 12-h photoperiod. Four distinct species of fungal isolates (HL1 to 4) derived from single spores were isolated from 30 plants with root rot symptoms collected from the study sites. To verify the pathogenicity of individual isolates, healthy coptis plants were inoculated by dipping roots into a conidial suspension (106 conidia/ml) for 30 min (15 plants per isolate), as described previously (1). Inoculated plants were potted in a mixture of sterilized quartz sand-vermiculite-perlite (4:2:1, v/v) and incubated at 25/18°C and 85 to 90% relative humidity (day/night) in a growth chamber with a daily 16-h photoperiod of fluorescent light. Plants dipped in sterile distilled water were used as controls. After 15 days, symptoms similar to those observed in the field were observed on all plants (n = 15) that were inoculated with HL1, but symptoms were not observed on plants inoculated with HL2, HL3, and HL4, nor on control plants. HL1 was re-isolated from symptomatic plants but not from any other plants. Morphological characterization of HL1 was performed by microscopic examination. The septate hyphae, blunt microconidia (2 to 3 septa) in the foot cell and slightly curved microconidia in the apical cell, and chlamydospores were consistent with descriptions of Fusarium solani (2). The pathogen was confirmed to be F. solani by amplification and sequencing of the ribosomal DNA internal transcribed spacer (rDNA-ITS) using the universal primer pair ITS4 and ITS5. Sequencing of the PCR product revealed a 99 to 100% similarity with the ITS sequences of F. solani in GenBank (JQ724444.1 and EU273504.1). Phylogenetic analysis (MEGA 5.1) using the neighbor-joining algorithm placed the HL1 isolate in a well-supported cluster (97% bootstrap value based on 1,000 replicates) with JQ724444.1 and EU273504.1. The pathogen was thus identified as F. solani based on its morphological and molecular characteristics. To our knowledge, this is the first report of root rot of coptis caused by F. solani in the world. References: (1) K. Dobinson et al. Can. J. Plant Pathol. 18:55, 1996. (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Oxford, 2006.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zhou Zhang ◽  
Zheng Bing Zhang ◽  
Yuan Tai Huang ◽  
FeiXiang Wang ◽  
Wei Hua Hu ◽  
...  

Peach [Prunus persica (L.) Batsch] is an important deciduous fruit tree in the family Rosaceae and is a widely grown fruit in China (Verde et al., 2013). In July and August 2018, a fruit rot disease was observed in a few peach orchards in Zhuzhou city, the Hunan Province of China. Approximately 30% of the fruit in more than 400 trees was affected. Symptoms displayed were brown necrotic spots that expanded, coalesced, and lead to fruit being rotten. Symptomatic tissues excised from the margins of lesions were surface sterilized in 70% ethanol for 10 s, 0.1% HgCl2 for 2 min, rinsed with sterile distilled water three times, and incubated on potato dextrose agar (PDA) at 26°C in the dark. Fungal colonies with similar morphology developed, and eight fungal colonies were isolated for further identification. Colonies grown on PDA were grayish-white with white aerial mycelium. After an incubation period of approximately 3 weeks, pycnidia developed and produced α-conidia and β-conidia. The α-conidia were one-celled, hyaline, fusiform, and ranged in size from 6.0 to 8.4 × 2.1 to 3.1 μm, whereas the β-conidia were filiform, hamate, and 15.0 to 27.0 × 0.8 to 1.6 μm. For molecular identification, total genomic DNA was extracted from the mycelium of a representative isolate HT-1 and the internal transcribed spacer region (ITS), β-tubulin gene (TUB), translation elongation factor 1-α gene (TEF1), calmodulin (CAL), and histone H3 gene (HIS) were amplified and sequenced (Meng et al. 2018). The ITS, TUB, TEF1, CAL and HIS sequences (GenBank accession nos. MT740484, MT749776, MT749778, MT749777, and MT749779, respectively) were obtained and in analysis by BLAST against sequences in NCBI GenBank, showed 99.37 to 100% identity with D. hongkongensis or D. lithocarpus (the synonym of D. hongkongensis) (Gao et al., 2016) (GenBank accession nos. MG832540.1 for ITS, LT601561.1 for TUB, KJ490551.1 for HIS, KY433566.1 for TEF1, and MK442962.1 for CAL). Pathogenicity tests were performed on peach fruits by inoculation of mycelial plugs and conidial suspensions. In one set, 0.5 mm diameter mycelial discs, which were obtained from an actively growing representative isolate of the fungus on PDA, were placed individually on the surface of each fruit. Sterile agar plugs were used as controls. In another set, each of the fruits was inoculated by application of 1 ml conidial suspension (105 conidia/ml) by a spray bottle. Control assays were carried out with sterile distilled water. All treatments were maintained in humid chambers at 26°C with a 12-h photoperiod. The inoculation tests were conducted twice, with each one having three fruits as replications. Six days post-inoculation, symptoms of fruit rot were observed on inoculated fruits, whereas no symptoms developed on fruits treated with agar plugs and sterile water. The fungus was re-isolated and identified to be D. hongkongensis by morphological and molecular methods, thus fulfilling Koch’s Postulates. This fungus has been reported to cause fruit rot on kiwifruit (Li et al. 2016) and is also known to cause peach tree dieback in China (Dissanayake et al. 2017). However, to our knowledge, this is the first report of D. hongkongensis causing peach fruit rot disease in China. The identification of the pathogen will provide important information for growers to manage this disease.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1580-1580 ◽  
Author(s):  
C. Kithan ◽  
L. Daiho

Etlingera linguiformis (Roxb.) R.M.Sm. of Zingiberaceae family is an important indigenous medicinal and aromatic plant of Nagaland, India, that grows well in warm climates with loamy soil rich in humus (1). The plant rhizome has medicinal benefits in treating sore throats, stomachache, rheumatism, and respiratory complaints, while its essential oil is used in perfumery. A severe disease incidence of leaf blight was observed on the foliar portion of E. linguiformis at the Patkai mountain range of northeast India in September 2012. Initial symptoms of the disease are small brown water soaked flecks appearing on the upper leaf surface with diameter ranging from 0.5 to 3 cm, which later coalesced to form dark brown lesions with a well-defined border. Lesions often merged to form large necrotic areas, covering more than 90% of the leaf surface, which contributed to plant death. The disease significantly reduces the number of functional leaves. As disease progresses, stems and rhizomes were also affected, reducing quality and yield. The diseased leaf tissues were surface sterilized with 0.2% sodium hypochlorite for 2 min followed by rinsing in sterile distilled water and transferred into potato dextrose agar (PDA) medium. After 3 days, the growing tips of the mycelium were transferred to PDA slants and incubated at 25 ± 2°C until conidia formation. Fungal colonies on PDA were dark gray to dark brown, usually zonate; stromata regularly and abundantly formed in culture. Conidia were straight to curved, ellipsoidal, 3-septate, rarely 4-septate, middle cells broad and darker than other two end cells, middle septum not median, smooth, 18 to 32 × 8 to 16 μm (mean 25.15 × 12.10 μm). Conidiophores were terminal and lateral on hyphae and stromata, simple or branched, straight or flexuous, often geniculate, septate, pale brown to brown, smooth, and up to 800 μm thick (2,3). Pathogen identification was performed by the Indian Type Culture Collection, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi (ITCC Accession No. 7895.10). Further molecular identity of the pathogen was confirmed as Curvularia aeria by PCR amplification and sequencing of the internal transcribed spacer (ITS) regions of the ribosomal DNA by using primers ITS4 and ITS5 (4). The sequence was submitted to GenBank (Accession No. MTCC11875). BLAST analysis of the fungal sequence showed 100% nucleotide similarity with Cochliobolus lunatus and Curvularia aeria. Pathogenicity tests were performed by spraying with an aqueous conidial suspension (1 × 106 conidia /ml) on leaves of three healthy Etlingera plants. Three plants sprayed with sterile distilled water served as controls. The first foliar lesions developed on leaves 7 days after inoculation and after 10 to 12 days, 80% of the leaves were severely infected. Control plants remained healthy. The inoculated leaves developed similar blight symptoms to those observed on naturally infected leaves. C. aeria was re-isolated from the inoculated leaves, thus fulfilling Koch's postulates. The pathogenicity test was repeated twice. To our knowledge, this is the first report of the presence of C. aeria on E. linguiformis. References: (1) M. H. Arafat et al. Pharm. J. 16:33, 2013. (2) M. B. Ellis. Dematiaceous Hyphomycetes. CMI, Kew, Surrey, UK, 1971. (3) K. J. Martin and P. T. Rygiewicz. BMC Microbiol. 5:28, 2005. (4) C. V. Suberamanian. Proc. Indian Acad. Sci. 38:27, 1955.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ling Wang ◽  
S. L. Ge ◽  
Kehan Zhao ◽  
huang Shiwen

Rice (Oryza sativa L.) is the most important and widely grown crop, covering about 29.9 million ha of total cultivation area in China. In the last decade, spikelet rot disease on rice became much more frequent in the middle and lower reaches of the Yangtze River, China. Fusarium proliferatum (Matsush.) Nirenberg ex Gerlach & Nirenberg was reported to be a causal agent of spikelet rot on rice in Hangzhou, Zhejiang province (Huang et al. 2012). In September 2019, a survey was conducted to understand the etiology of the disease in the main rice growing regions of Jinshan District of Shanghai. Symptomatic panicles exhibiting reddish or brown discoloration on the glumes were collected from different rice fields, where disease incidence was estimated to be between 20 to 80%. Diseased glumes were cut into small sections (5 × 5 mm) from the boundary of necrotic and healthy tissues, surface-sterilized with 75% ethanol for 30 s and 3% sodium hypochlorite for 90 s, rinsed twice with sterile distilled water, then placed onto 1/5 strength potato dextrose agar (PDA). After 3 to 5 days of incubation at 28°C in the dark, fungal growth with Fusarium-like colonies were transferred to PDA and purified by the single-spore isolation method. A total of 12 isolates were obtained and colonies showed loosely floccose, white mycelium and pale-yellow pigmentation on PDA. Microconidia were ovoid mostly with 0 to 1 septum, and measured 4.2 to 16.6 × 2.5 to 4.1 μm (n = 50). After 5-7 days of inoculation on carnation leaf agar (CLA), macroconidia produced usually had 3 to 5 septa, slightly curved at the apex, ranging from 15.7 to 39.1 × 3.3 to 5.0 μm (n = 50). Chlamydospores were produced in hyphae, most often solitary in short chains or in clumps, ellipsoidal or subglobose with thick and roughened walls. Molecular identification was performed on the representative isolates (JS3, JS9, and JS21). The rDNA internal transcribed spacer (ITS), translation elongation factor (TEF-1α) and β-tubulin (β-TUB) genes were amplified and sequenced using the paired primers ITS1/ITS4 (White et al. 1990), EF1/EF2 (O’Donnell et al. 1998) and T1/T22 (O’Donnell and Cigelnik 1997), respectively. The obtained sequences were deposited in GenBank under accession numbers MT889972 to MT889974 (ITS), MT895844 to MT895846 (TEF-1α), and MT895841 to MT895843 (β-TUB), respectively. BLASTn search of the sequences revealed 99 to 100% identity with ITS (MF356578), TEF-1α (HM770725) and β-TUB (GQ915444) of Fusarium incarnatum isolates. FUSARIUM-ID (Geiser et al. 2004) analysis showed 99 to 100% similarity with sequences of the F. incarnatum-equiseti species complex (FIESC) (FD_01651 and FD_01628). In addition, a phylogenetic analysis based on the concatenated nucleotide sequences placed the isolates in the F. incarnatum clade at 100% bootstrap support. Thus, both morphological observations and molecular criteria supported identification of the isolates as F. incarnatum (Desm.) Sacc (synonym: Fusarium semitectum) (Leslie and Summerell 2006, Nirenberg 1990). Pathogenicity tests were performed on susceptible rice cultivar ‘Xiushui134’. At pollen cell maturity stage, a 2-ml conidial suspension (5 × 105 macroconidia/ml) of each isolate was injected into 10 rice panicles. Control plants were inoculated with sterile distilled water. Then, the pots were kept in a growth chamber at 28°C, 80% relative humidity, and 12 h/12 h light (10,000 lux)/dark. The experiment was repeated two times for each isolate. Two weeks post-inoculation, all inoculated panicles showed similar symptoms with the original samples, whereas no symptoms were observed on the control. The pathogen was re-isolated from inoculated panicles and identified by the method described above to fulfill Koch's postulates. Previous studies reported that F. incarnatum reproduced perithecia to overwinter on rice stubble as the inoculum of Fusarium head blight of wheat in southern China (Yang et al. 2018). To our knowledge, this is the first report of spikelet rot on rice caused by F. incarnatum in China. Further investigation is needed to gain a better understanding its potential geographic distribution of this new pathogen on rice crop. References: (1) Huang, S. W., et al. 2011. Crop Prot. 30: 10. (2) White, T. J., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA. (3) O’Donnell, K., et al. 1998. Proc. Natl. Acad. Sci. U.S.A. 95: 2044. (4) O'Donnell, K., Cigelnik, E. 1997. Mol. Phylogenet. Evol. 7: 103. (5) Geiser, D. M., et al. 2004. Eur. J. Plant Pathol. 110: 473. (6) Leslie, J. F., and Summerell, B. A. 2006. The Fusarium Laboratory Manual. Blackwell, Ames, IA. (7) Nirenberg, H. I. 1990. Stud. Mycol. 32: 91. (8) Yang, M. X., et al. 2018. Toxins. 10: 115. The author(s) declare no conflict of interest. Funding: Funding was provided by National Natural Science Foundation of China (grant no. 31800133), Zhejiang Provincial Natural Science Foundation of China (grant no. LQ18C140005), Key Research and Development Program of Zhejiang Province (grant no. 2019C02018), Shanghai Science and Technology for Agriculture Promotion Project (2019-02-08-00-08-F01127), and the Agricultural Science and Technology Innovation Program of China Academy of Agricultural Science (CAAS-ASTIP-2013- CNRRI).


Sign in / Sign up

Export Citation Format

Share Document