scholarly journals Cold Crack Susceptibility studies on High Strength Low Alloy Steel 950A using Tekken Test

2017 ◽  
Vol 13 ◽  
pp. 25-31
Author(s):  
Manivelmuralidaran Velumani ◽  
M. Sakthivel ◽  
M. Balaji

In This research article deals with the study of cold cracking susceptibility of High Strength Low Alloy Steel (HSLA) 950A using Gas Metal Arc Welding process (GMAW). The cold cracking is a general problem while welding HSLA steels. It thus becomes mandatory to have a novel method of welding to minimize the effects of cold cracking. The cold cracking tendency of the material is determined using the Y groove Tekken test and the test is carried out with DIN EN ISO 17642–2 standard. The welding of the base metal has been carried out using the low hydrogen electrode ER 70SD2. The test procedure is followed under self-restraint condition for determining cold cracking susceptibility of weld metal. Micro structural constituent of the weld metal plays an important role in determining the cold crack susceptibility of the weld metal. Hence an attempt has been made to impart the microstructure having high resistance to cold cracking.  It has been observed that Acicular ferrite microstructure in the weld metal increases the cold cracking resistance of the welded joint.  In the present study, the effect of preheating temperature on cold crack susceptibility analyzed by varying the preheating temperature 100ºC, 150ºC and acicular ferrite microstructure observed in the microstructure analysis of the welded specimen. The effect of microstructure on cold cracking has also been established. But due to very limited range of temperature, the effect of preheating temperature on cold crack susceptibility was inconclusive. But the formation of acicular ferrite microstructure will have greater influence on cold crack susceptibility. In future, effects of Nickel, Manganese and other alloying elements of the filler material in increasing cold cracking resistance can also be studied for far reaching prospects of the research.

2016 ◽  
Vol 838 ◽  
pp. 10-17 ◽  
Author(s):  
Dariusz Fydrych ◽  
Jacek Tomków ◽  
Grzegorz Rogalski ◽  
Jerzy Łabanowski

The paper presents experimental evaluation of susceptibility of the high strength S460ML steel to cold cracking in the conditions of wet welding with the use of covered electrodes. From the results of Tekken tests it was found out that the investigated steel was characterised, in the conditions of the carried out experiments (underwater wet welding and air welding with rutile electrodes), of high susceptibility to cold cracking. Maximum hardness of HAZ in most cases do not fulfill criterion of PN-EN ISO 15614-1 standard: exceeds 380HV10.


2008 ◽  
Vol 580-582 ◽  
pp. 13-16
Author(s):  
Hee Jin Kim ◽  
Jun Seok Seo ◽  
Jae Hak Kim ◽  
Ka Hee Kim ◽  
Jin Hyun Koh ◽  
...  

Facing the practical difficulties in reducing the diffusible hydrogen content of fluxcontaining welding consumables like flux-cored arc welding (FCAW) wires, the present study investigated the microstructural aspect to improve the hydrogen-induced cold crack (HICC) resistance of multipass weld metal of 600MPa strength. Two FCA welding wires were prepared by controlling the Ni content to give different weld microstructure, but to have similar levels of hardness and diffusible hydrogen content. HICC susceptibility of those two consumables was evaluated by 'G-BOP test' and also by 'multi-pass weld metal cold cracking test'. As a result of this study, it was demonstrated that microstructural modification with decreased proportion of grain boundary ferrite (GF) improved cold crack resistance of weld metal. The detrimental effect of GF against HICC has also been addressed based on the characteristics of weld metal cold cracking.


Sign in / Sign up

Export Citation Format

Share Document