acicular ferrite
Recently Published Documents


TOTAL DOCUMENTS

328
(FIVE YEARS 51)

H-INDEX

41
(FIVE YEARS 2)

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1997
Author(s):  
Mingliang Qiao ◽  
Huibing Fan ◽  
Genhao Shi ◽  
Leping Wang ◽  
Qiuming Wang ◽  
...  

Welding thermal cycles with heat inputs ranging from 25 to 75 kJ/cm were performed on a Gleeble 3500. The impact energy improved significantly (from 10 to 112 J), whereas the simulated coarse-grain heat-affected zone (CGHAZ) microstructure changed from lath bainite ferrite (LBF) and granular bainite ferrite (GBF) + martensite/austenite (M/A) to acicular ferrite (AF) + polygonal ferrite (PF) + M/A as the heat input increased. Simultaneously, the mean coarse precipitate sizes and the degree of V(C,N) enrichment on the precipitate surface increased, which provided favorable conditions for intragranular ferrite nucleation. The Ar3 of CGHAZ increased from 593 °C to 793 °C with increasing heat inputs; the longer high-temperature residence time inhibited the bainite transformation and promoted the ferrite transformation. As a result, acicular ferrite increased and bainite decreased in the CGHAZ. The CGHAZ microstructure was refined for the acicular ferrite segmentation of the prior austenite, and the microstructure mean equivalent diameter (MED) in the CGHAZ decreased from 7.6 µm to 4.2 µm; the densities of grain boundaries higher than 15° increased from 20.3% to 45.5% and significantly increased the impact toughness. The correlation of heat input, microstructure, and impact toughness was investigated in detail. These results may provide new ideas for the development of high welding heat input multiphase steels.


Author(s):  
Tomonori Kakizaki ◽  
Shodai Koga ◽  
Hajime Yamamoto ◽  
Yoshiki Mikami ◽  
Kazuhiro Ito ◽  
...  

AbstractElectroslag welding (ESW) is known to show higher heat input than electrogas welding (EGW), resulting in poor low-temperature toughness. However, a newly developed ESW (dev. ESW) method using low-resistivity slag bath exhibited excellent low-temperature toughness as a result of lower effective heat input than conventional EGW, as demonstrated by the faster cooling rates measured in weld metals and estimated using finite element method analyses. This led to much shallower molten pool in the dev. ESW, resulting in much finer columnar grains and thinner centerline axial grains. High cooling speed in the dev. ESW method appeared to contribute to increased acicular ferrite proportion. The uniform microstructure with large acicular ferrite proportion and small number of inclusions in the weld metal permitted the dev. ESW weld metal to possess little variation in Charpy impact energy across the center of weld metal.


2021 ◽  
Vol 904 ◽  
pp. 154-158
Author(s):  
Zhi Ling Wang

The welding of WELDOX960 ultra-high strength steel must consider not only the strength but also the toughness of the welding zone. In this paper, a new welding process with low strength matching backing layer is studied, that is, we choose ER50-6 wire for backing welding, use T union gm120 wire for MAG welding filling, and complete the cover welding. We prepared two groups of welding samples of ER50-6 wire backing welding and T union gm120 wire backing welding. Then we test the samples by optical metallography, tensile test, impact test and hardness test. The results show that the properties of the two kinds of backing weld can meet the requirements. The basic structure of the weld outside the backing layer of the two welding methods is similar, which are acicular ferrite and carbide. Using ER50-6 welding wire as backing, the microstructure of the weld is uniform and fine ferrite grain and a small amount of pearlite. Using T union GM120 high strength steel as backing, the microstructure of the weld is acicular ferrite and carbide. The toughness of ER50-6 is higher than that of T union GM120, and the hardness is lower than that of T union GM120.The research results have been successfully applied to the welding of large tonnage truck crane boom, and the enterprise has achieved high economic benefits.


2021 ◽  
Vol 11 (20) ◽  
pp. 9512
Author(s):  
Adam Skowronek ◽  
Adam Grajcar

The modification of the deformation and cooling methods resulting in the obtainment of acicular ferrite promotes an increase in the proportion of retained austenite (RA) and a corresponding increase in mechanical properties in Si-Al TRIP-aided steel. The effect of controlled thermomechanical processing in laboratory- and semi-industrial scales on the possibility of obtaining acicular ferrite and a high fraction of retained austenite was investigated. The steel was hot deformed in three steps: at 1050, 900 and 750 ˚C to introduce dislocations into the hot-deformed pancake austenite. Next, slow cooling in a ferritic transformation region was performed, followed by isothermal holding of steel at 450 ˚C. The interrupted tensile tests at the strain levels of 5, 10 and 15% were performed to investigate the mechanical properties response and the stability of the obtained retained austenite. Light and scanning electron microscopy, XRD and EBSD analyses were performed to assess microstructural features. The produced material showed a multiphase microstructure containing acicular ferrite and 10% of retained austenite. The microstructures obtained in both production methods were slightly different due to high temperature inertia in the semi-industrial process.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4424
Author(s):  
Yang Yang ◽  
Xian-Ming Zhao ◽  
Hao Li ◽  
Xiao-Yu Zhao ◽  
Huai-Bin Han

In this study, the evolution of high-strength HSLA steel microstructure was studied using high-temperature laser confocal microscopy and SEM, TEM, and EPMA techniques. The effect of precipitates on grain boundary migration of austenite during high-temperature heating and the effect of inclusions in undercooled austenite on AF phase transformation were studied. The effect of multiphase microstructure on impact toughness was studied by Gleeble thermal simulation at 550, 600, and 650 °C. The results show that the austenite grain is refined by TiN pinning at high temperatures, and a large number of NbC and VCN are precipitated in ferrite for precipitation strengthening. The (Ti-Mn-O) + (Al + Si + Mn-O) + MnS composite inclusions with smaller sizes have a greater promoting effect on the nucleation of acicular ferrite than single-phase MnS. With a decrease in isothermal temperature, the content of acicular ferrite increases. When the isothermal temperature is 550 °C, an increase in the maximum impact toughness of acicular ferrite with large-angle grain boundary is clearly observable.


2021 ◽  
pp. 130603
Author(s):  
Xiaonan Qi ◽  
Xiaonan Wang ◽  
Hongshuang Di ◽  
Xinjun Shen ◽  
Pengcheng Huan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document