scholarly journals CHARACTERIZATION OF CODES OF IDEALS OF THE POLYNOMIAL RING F30 2 [x] mod ô€€€ x30 ô€€€ 1 FOR ERROR CONTROL IN COMPUTER APPLICATONS

2016 ◽  
Vol 12 (5) ◽  
pp. 6238-6247
Author(s):  
Maurice Oduor ◽  
Olege Fanuel ◽  
Aywa Shem ◽  
Okaka A Colleta

The study of ideals in algebraic number system has contributed immensely in preserving the notion of unique factorization in rings of algebraic integers and in proving Fermat's last Theorem. Recent research has revealed that ideals in Noethe-rian rings are closed in polynomial addition and multiplication.This property has been used to characterize the polynomial ring Fn 2 [x] mod (xn 1) for error control. In this research we generate ideals of the polynomial ring using GAP software and characterize the polycodewords using Shannon's Code region and Manin's bound.

Author(s):  
David E. Rush

Let R be the ring of integers of a number field K with class group G. It is classical that R is a unique factorization domain if and only if G is the trivial group; and the finite abelian group G is generally considered as a measure of the failure of unique factorization in R. The first arithmetic description of rings of integers with non-trivial class groups was given in 1960 by L. Carlitz (1). He proved that G is a group of order ≤ two if and only if any two factorizations of an element of R into irreducible elements have the same number of factors. In ((6), p. 469, problem 32) W. Narkiewicz asked for an arithmetic characterization of algebraic number fields K with class numbers ≠ 1, 2. This problem was solved for certain class groups with orders ≤ 9 in (2), and for the case that G is cyclic or a product of k copies of a group of prime order in (5). In this note we solve Narkiewicz's problem in general by giving arithmetical characterizations of a ring of integers whose class group G is any given finite abelian group.


2017 ◽  
Vol 13 (10) ◽  
pp. 2505-2514 ◽  
Author(s):  
Anuj Jakhar ◽  
Sudesh K. Khanduja ◽  
Neeraj Sangwan

Let [Formula: see text] denote the ring of algebraic integers of an algebraic number field [Formula: see text], where [Formula: see text] is a root of an irreducible trinomial [Formula: see text] belonging to [Formula: see text]. In this paper, we give necessary and sufficient conditions involving only [Formula: see text] for a given prime [Formula: see text] to divide the index of the subgroup [Formula: see text] in [Formula: see text]. In particular, we deduce necessary and sufficient conditions for [Formula: see text] to be equal to [Formula: see text].


1980 ◽  
Vol 32 (2) ◽  
pp. 350-353
Author(s):  
K. Benabdallah ◽  
K. W. Roggenkamp

The main purpose of this note is to give a characterization of p-pure unital subrings of the p-adic completion of the ring of integers R of an algebraic number field K localized at a maximal ideal p. This yields a characterization of the valued subfields of the p-adic field. In this context there turn up valuations of rational function fields in many indeterminates which seem to be new. The proof that the underlying function is indeed a valuation is quite easy here, however direct computations would involve a large amount of combinatorics. Our approach seems to fit well with Kronecker's, apparently forgotten, approach to ideal theory in rings of algebraic integers [3]. The concept of p-pure unital subrings arose from a study by the first author and A. Laroche of quasi-p-pure-injective (q.p.p.i.) abelian groups ([1], p. 582).


Author(s):  
Chris Bruce

Abstract We compute the KMS (equilibrium) states for the canonical time evolution on C*-algebras from actions of congruence monoids on rings of algebraic integers. We show that for each $\beta \in [1,2]$, there is a unique KMS$_\beta $ state, and we prove that it is a factor state of type III$_1$. There are phase transitions at $\beta =2$ and $\beta =\infty $ involving a quotient of a ray class group. Our computation of KMS and ground states generalizes the results of Cuntz, Deninger, and Laca for the full $ax+b$-semigroup over a ring of integers, and our type classification generalizes a result of Laca and Neshveyev in the case of the rational numbers and a result of Neshveyev in the case of arbitrary number fields.


Author(s):  
D. D. Anderson ◽  
Ranthony A. C. Edmonds

Given a certain factorization property of a ring [Formula: see text], we can ask if this property extends to the polynomial ring over [Formula: see text] or vice versa. For example, it is well known that [Formula: see text] is a unique factorization domain if and only if [Formula: see text] is a unique factorization domain. If [Formula: see text] is not a domain, this is no longer true. In this paper, we survey unique factorization in commutative rings with zero divisors, and characterize when a polynomial ring over an arbitrary commutative ring has unique factorization.


Author(s):  
Nasreddine Benbelkacem ◽  
Martianus Frederic Ezerman ◽  
Taher Abualrub ◽  
Nuh Aydin ◽  
Aicha Batoul

This paper considers a new alphabet set, which is a ring that we call [Formula: see text], to construct linear error-control codes. Skew cyclic codes over this ring are then investigated in details. We define a nondegenerate inner product and provide a criteria to test for self-orthogonality. Results on the algebraic structures lead us to characterize [Formula: see text]-skew cyclic codes. Interesting connections between the image of such codes under the Gray map to linear cyclic and skew-cyclic codes over [Formula: see text] are shown. These allow us to learn about the relative dimension and distance profile of the resulting codes. Our setup provides a natural connection to DNA codes where additional biomolecular constraints must be incorporated into the design. We present a characterization of [Formula: see text]-skew cyclic codes which are reversible complement.


Sign in / Sign up

Export Citation Format

Share Document