scholarly journals Neutron Activation Analysis of Some Building Material

2018 ◽  
Vol 14 (2) ◽  
pp. 5564-5573
Author(s):  
Tarek Mohamed Talaat Salama ◽  
N. A. Mansour ◽  
M. Fayez-Hassan

Neutron activation analysis (NAA), based on the comparator method, has the potential to fulfill the requirements of a primary ratio method as defined in 1998 by the Comité Consultatif pour la Quantité de Matière — Métrologie en Chimie (CCQM, Consultative Committee on Amount of Substance — Metrology in Chemistry Studies of Neutron Activation Analysis (NAA) have been carried out on different Egyptian building material samples. The technique of neutron activation analysis is based on the measurement of radiation released by the decay of radioactive nuclei formed by neutron irradiation of the material. The most suitable source of neutrons for such an application is usually a research reactor. The samples that can be analyzed with this method stem from a number of different fields, including medicine, nutrition, biology, chemistry, forensics, the environment and mining. Neutron activation analysis can be performed in a variety of ways. This depends on the element and the corresponding radiation levels to be measured, as well as on the nature and the extent of interference from other elements present in the sample. Most of the methods used are non-destructive, based on the detection of gamma radiation emitted by the irradiated material after or during the irradiation. Next to education and training, neutron activation analysis is the most widely used application of research reactors. Almost any reactor operating at 10-30 kilowatt of thermal power is capable of providing a sufficient neutron flux to irradiate samples for selective applications of this analysis technique. Another method of NAA by using two Am-Be isotopic neutron sources of activity 5 Ci were used in this investigation. The accomplished gamma rays were measured using 70 % HPGe spectrometer. This work demand to estimate the elements contained in cement products and its quality control. X-ray Fluorescence (XRF) measurements were done for confirming our results, and for determining the average neutron flux of 3.7× 103 n/cm2sec. The Natural radioactivities of these samples were measured before the analysis to know the background level of 40K, 238U and232Th nuclei. The results investigated that NAA agree with the results of XRF and the world range of the cement concentration of the essential elements Ca, Al, Na, Fe, Mn, V, Sr and Si.

2013 ◽  
Vol 101 (9) ◽  
pp. 601-606
Author(s):  
M. Wasim

Summary Miniature neutron source reactors (MNSR) are known for their stable neutron flux characteristics and are mostly employed for neutron activation analysis (NAA). Interfering reactions are sometimes observed in instrumental neutron activation analysis (INAA). Failure to correct for these interferences produces significant systematic positive errors. This paper provides correction factors for the interferences caused by the threshold reactions and fission products of 235U. These factors were calculated by using the experimentally determined thermal, epithermal and fast neutron flux and epithermal neutron flux shape factor and the nuclear data from the literature using the Høgdahl convention. Correction factors were calculated for (n, p) and (n, α) reactions for the most commonly observed radionuclides in INAA. Similarly, correction factors for uranium fission were calculated for 9 elements (Ce, Ba, La, Mo, Nd, Pd, Ru, Sm and Zr). The correction factors were validated by analyzing different materials. A comparison of uranium fission factors with those published in the literature showed a good agreement except for 97Zr, 99Mo and 131Ba which is due to difference in the flux characteristics. In general, these factors can be used with confidence.


2008 ◽  
Vol 91 (2) ◽  
pp. 392-399 ◽  
Author(s):  
Shahida Waheed ◽  
Shujaat Ahmad

Abstract Jaggery, brown sugar, white sugar, and molasses collected from the local sugarcane industry of Pakistan have been analyzed for essential elements in order to estimate their nutritional adequacy. Instrumental neutron activation analysis was used to determine Ca, Cl, Co, Cr, Fe, K, Mg, Mn, Na, and Zn through sequential, short, medium, and long irradiation times. Maximum concentrations for most of these elements were determined in molasses, with lower concentrations determined in jaggery and brown sugar; white sugar contained trace amounts of all essential elements. Contributions to the weekly Recommended Dietary Allowance (RDA) values for the elements were estimated only for jaggery, brown sugar, and white sugar because molasses in Pakistan is not consumed as a dietary item. Jaggery contributes the highest percentages of Cr, Mg, Mn, and Zn, whereas the highest percentages of Cl, Fe, K, and Na can be acquired from brown sugar. The contribution of white sugar to the weekly RDAs for these elements is negligible, indicating that white sugar is a poor source of the essential elements. However, the introduction of molasses to the diet can contribute to an adequate intake of these elements.


Sign in / Sign up

Export Citation Format

Share Document