Evaluation of antiviral activity and toxicity of recombinant human interferon alfa-2a in calves persistently infected with type 1 bovine viral diarrhea virus

2004 ◽  
Vol 65 (6) ◽  
pp. 865-870 ◽  
Author(s):  
Simon F. Peek ◽  
Michael D. Bonds ◽  
Patrick Schaele ◽  
Sarah Weber ◽  
Kristin Friedrichs ◽  
...  
2020 ◽  
Vol 157 ◽  
pp. 569-576
Author(s):  
Laura Junqueira de Camargo ◽  
Tony Picoli ◽  
Geferson Fischer ◽  
Ana Claudia Oliveira de Freitas ◽  
Rodrigo Bozembecker de Almeida ◽  
...  

2007 ◽  
Vol 88 (3) ◽  
pp. 748-757 ◽  
Author(s):  
Cristina T. Rosas ◽  
Patricia König ◽  
Martin Beer ◽  
Edward J. Dubovi ◽  
B. Karsten Tischer ◽  
...  

Bovine viral diarrhea virus (BVDV) is an economically important pathogen of cattle that is maintained in the population by persistently infected animals. Virus infection may result in reproductive failure, respiratory disease and diarrhoea in naïve, susceptible bovines. Here, the construction and characterization of a novel vectored vaccine, which is based on the incorporation of genes encoding BVDV structural proteins (C, Erns, E1, E2) into a bacterial artificial chromosome of the equine herpesvirus type 1 (EHV-1) vaccine strain RacH, are reported. The reconstituted vectored virus, rH_BVDV, expressed BVDV structural proteins efficiently and was indistinguishable from parental vector virus with respect to growth properties in cultured cells. Intramuscular immunization of seronegative cattle with rH_BVDV resulted in induction of BVDV-specific serum neutralizing and ELISA antibodies. Upon experimental challenge infection of immunized calves with the heterologous BVDV strain Ib SE5508, a strong anamnestic boost of the neutralizing-antibody response was observed in all vaccinated animals. Immunized animals presented with reduced viraemia levels and decreased nasal virus shedding, and maintained higher leukocyte counts than mock-vaccinated controls.


2020 ◽  
Vol 103 (3) ◽  
pp. 560-571 ◽  
Author(s):  
Hanah M Georges ◽  
Katie J Knapek ◽  
Helle Bielefeldt-Ohmann ◽  
Hana Van Campen ◽  
Thomas R Hansen

Abstract Bovine viral diarrhea virus continues to cost the cattle industry millions of dollars each year despite control measures. The primary reservoirs for bovine viral diarrhea virus are persistently infected animals, which are infected in utero and shed the virus throughout their lifetime. The difficulty in controlling the virus stems from a limited understanding of transplacental transmission and fetal development of immunotolerance. In this study, pregnant bovine viral diarrhea virus naïve heifers were inoculated with bovine viral diarrhea virus on day 75 of gestation and fetal spleens were collected on gestational days 82, 97, 190, and 245. Microarray analysis on splenic RNA from days 82 and 97 revealed an increase in signaling for the innate immune system and antigen presentation to T cells in day 97 persistently infected fetuses compared to controls. Reverse transcription quantitative polymerase chain reaction on select targets validated the microarray revealing a downregulation of type I interferons and lymphocyte markers in day 190 persistently infected fetuses compared to controls. Protein was visualized using western blot and tissue sections were analyzed with hematoxylin and eosin staining and immunohistochemistry. Data collected indicate that fetal immunotolerance to bovine viral diarrhea virus developed between days 97 and 190, with mass attenuation of the immune system on day 190 of gestation. Furthermore, lymphocyte transcripts were initially unchanged then downregulated, suggesting that immunotolerance to the virus stems from a blockage in lymphocyte activation and hence an inability to clear the virus. The identification of lymphocyte derived immunotolerance will aid in the development of preventative and viral control measures to implement before or during pregnancy.


Sign in / Sign up

Export Citation Format

Share Document