Effects of catheter shape, interelectrode spacing, and electrode size on transesophageal atrial pacing in dogs

2016 ◽  
Vol 77 (3) ◽  
pp. 275-279
Author(s):  
Robert A. Sanders ◽  
Emily H. Chapel
Circulation ◽  
1997 ◽  
Vol 95 (10) ◽  
pp. 2416-2422 ◽  
Author(s):  
Claudio Pandozi ◽  
Leopoldo Bianconi ◽  
Mauro Villani ◽  
Antonio Castro ◽  
Giuliano Altamura ◽  
...  

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
O Yasin ◽  
A Sugrue ◽  
M Van Zyl ◽  
A Ladejobi ◽  
J Tri ◽  
...  

Abstract Background Slowing electrical conduction by cooling the myocardium can be used for defibrillation. We previously demonstrated the efficacy of a small cold device placed in oblique sinus (OS) in terminating atrial fibrillation (AF). However, the parameters needed to achieve effective atrial defibrillation are unknown. Purpose Assess effect of the size of cooled myocardium on frequency of AF termination in acute canine animal models. Methods Sternotomy was performed under general anesthesia in 10 acute canine experiments. AF was induced using rapid atrial pacing and intra-myocardial epinephrine and acetylcholine injections. Once AF sustained for at least 30s, either a cool (7–9°C) or placebo (body temperature) device was placed in the OS. Four device sizes were tested; ½X½, ¾X¾, and 1X1 inch devices and two ¾X¾ inch devices placed side by side simultaneously. Time to AF termination was recorded. Chi-squared or Fisher's exact test were used to compare the frequency of arrhythmia termination with cooling versus placebo. Results A total of 166 applications were performed (89 cool vs 77 placebo) in 10 animal experiments. Overall, AF terminated in 82% of the cooling applications vs. 67.5% of placebo (P=0.03, Figure 1). For the ½X½ inch device 88% of cold applications restored sinus rhythm vs. 63.6% for placebo (P=0.05). The frequency of sinus restoration for cold ¾X¾, 1X1 and two ¾X¾ side by side devices was 86.7%, 83.3% and 70% respectively. Time to sinus restoration when achieved was within three minutes was also not significantly changed. Conclusion Placing a cool device in the oblique sinus can terminate AF and efficacy is not affected by the size of device. Funding Acknowledgement Type of funding source: Private grant(s) and/or Sponsorship. Main funding source(s): MediCool Technologies


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1475
Author(s):  
Masahiro Okamoto ◽  
Kazuya Murao

With the spread of devices equipped with touch panels, such as smartphones, tablets, and laptops, the opportunity for users to perform touch interaction has increased. In this paper, we constructed a device that generates multi-touch interactions to realize high-speed, continuous, or hands-free touch input on a touch panel. The proposed device consists of an electrode sheet printed with multiple electrodes using conductive ink and a voltage control board, and generates eight multi-touch interactions: tap, double-tap, long-press, press-and-tap, swipe, pinch-in, pinch-out, and rotation, by changing the capacitance of the touch panel in time and space. In preliminary experiments, we investigated the appropriate electrode size and spacing for generating multi-touch interactions, and then implemented the device. From the evaluation experiments, it was confirmed that the proposed device can generate multi-touch interactions with high accuracy. As a result, tap, press-and-tap, swipe, pinch-in, pinch-out, and rotation can be generated with a success rate of 100%. It was confirmed that all the multi-touch interactions evaluated by the proposed device could be generated with high accuracy and acceptable speed.


Sign in / Sign up

Export Citation Format

Share Document