scholarly journals Creep-Rupture Behavior and Creep Strain Distribution of Welded Joints of 304 Stainless Steel Thick Plates.

1996 ◽  
Vol 45 (12) ◽  
pp. 1328-1333 ◽  
Author(s):  
Hiromichi HONGO ◽  
Masayoshi YAMAZAKI ◽  
Takashi WATANABE ◽  
Junichi KINUGAWA ◽  
Yoshio MONMA
1990 ◽  
Vol 39 (440) ◽  
pp. 509-515 ◽  
Author(s):  
Masayoshi YAMAZAKI ◽  
Yoshio MONMA ◽  
Hiromichi HONGO ◽  
Takashi WATANABE ◽  
Junichi KINUGAWA ◽  
...  

Author(s):  
Gang Ma ◽  
Xiang Ling

High tensile weld residual stress is an important factor contributing to stress corrosion cracking (SCC). Ultrasonic impact treatment (UIT) can produce compressive stresses on the surface of welded joints that negate the tensile stresses to enhance the SCC resistance of welded joints. In the present work, X-ray diffraction method was used to obtain the distribution of residual stress induced by UIT. The results showed that UIT could cause a large compressive residual stress up to 325.9MPa on the surface of the material. A 3D finite element model was established to simulate the UIT process by using a finite element software ABAQUS. The residual stress distribution of the AISI 304 stainless steel induced by UIT was predicted by finite element analysis. In order to demonstrate the improvement of the SCC resistance of the welded joints, the specimens were immersed in boiling 42% magnesium chloride solution during SCC testing, and untreated specimen cracked after immersion for 23 hours. In contrast, treated specimens with different coverage were tested for 1000 hours without visible stress corrosion cracks. The microstructure observation results revealed that a hardened layer was formed on the surface and the initial coarse-grained structure in the surface was refined into ultrafine grains. The above results indicate that UIT is an effective approach for protecting weldments against SCC.


1969 ◽  
Vol 91 (1) ◽  
pp. 32-38 ◽  
Author(s):  
C. D. Lundin ◽  
A. H. Aronson ◽  
L. A. Jackman ◽  
W. R. Clough

Available equipment initially developed for welding research studies was used to investigate the creep-rupture behavior of AISI type 347 stainless steel in a very-high-temperature range from 62 to 86 percent of the solidus. Stress applications from 900 to 28,000 psi gave rupture times from a fraction of a second to several hundred seconds with thousandfold variations of minimum creep rate. Results could be presented by conventional means. Data scatter on a Monkman-Grant plot was typical. Correlation and extrapolation procedures developed by Larson-Miller, Manson-Haferd, Dorn, Korchynsky, and Conrad for conventional long-time results were found to be applicable, with preference being given to the Manson-Haferd procedures.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Xiang Ling ◽  
Gang Ma

High tensile weld residual stress is an important factor contributing to stress corrosion cracking (SCC). Ultrasonic impact treatment (UIT) can produce compressive stresses on the surface of welded joints that negate the tensile stresses to enhance the SCC resistance of welded joints. In the present work, X-ray diffraction method was used to obtain the distribution of residual stress induced by UIT. The results showed that UIT could cause a large compressive residual stress in access of 300 MPa on the surface of the material. A 3D finite element model was established to simulate the UIT process by using the finite element software ABAQUS. The residual stress distribution of the AISI 304 stainless steel induced by UIT was predicted by finite element analysis. In order to demonstrate the improvement of the SCC resistance of the welded joints, the specimens were immersed in boiling 42% magnesium chloride solution during SCC testing, and untreated specimen cracked after immersion for 23 h. In contrast, treated specimens with different impact duration were tested for 1000 h without visible stress corrosion cracks. The microstructure observation results revealed that a hardened layer was formed on the surface and the initial coarse-grained structure in the surface was refined into ultrafine grains. The above results indicate that UIT is an effective approach for protecting weldments against SCC.


Sign in / Sign up

Export Citation Format

Share Document