aisi 304 stainless steel
Recently Published Documents


TOTAL DOCUMENTS

790
(FIVE YEARS 185)

H-INDEX

45
(FIVE YEARS 7)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7796
Author(s):  
Muhammad Arif Mahmood ◽  
Diana Chioibasu ◽  
Sabin Mihai ◽  
Mihai Iovea ◽  
Ion N. Mihailescu ◽  
...  

In this study, an application of the laser-melting deposition additive manufacturing technique as a welding method has been studied for the laser welding (LW) of AISI 304 stainless steel, specifically 0.4 mm and 0.5 mm thick sheets. The welding was carried out without and with filler material. Inconel 718 powder particles were used as filler material in the second case. A series of experiments were designed by changing the process parameters to identify the effect of operating conditions on the weld width, depth, and height. The welds were examined through metallographic experiments performed at various cross-sections to identify the defects and pores. All the deposited welds were passed through a customized mini-focus X-ray system to analyze the weld uniformities. The optimal operating conditions were determined for 0.4 mm and 0.5 mm sheets for the LW with and without filler material. It was found that laser power, laser scanning speed, powder flow rate, and helium to argon gases mixture-control the weld bead dimensions and quality. X-ray analyses showed that the optimal operating conditions gave the least peak value of non-uniformity in the laser welds. This study opens a new window for laser welding via additive manufacturing with X-ray monitoring.


Author(s):  
A.P. Loperena ◽  
I.L. Lehr ◽  
S.B. Saidman

Duplex coating consisting of an inner cerium-based layer and polypyrrole (PPy) film topcoat was electrodeposited onto AISI 304 stainless steel. The cerium-based coating was electrodeposited in solutions containing cerium nitrate at 50 ºC. The polymeric outer layer was electropolymerized in the presence of sodium bis(2-ethylhexyl) sulfosuccinate (AOT). The electrosynthesis was done under potentiostat conditions. The coatings were characterized by scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDX). The morphology of the double-layered cerium polypyrrole film shows a granular structure with the presence of agglomerates of small grains. The anticorrosive performance of the coatings was evaluated in sodium chloride solution by linear polarization, open circuit measurements, and electrochemical impedance spectroscopy (EIS). Single films, cerium layer and PPy coating, and the duplex film all reduce the corrosion rate of AISI 304 stainless steel in NaCl solution. The duplex coating presents an improved corrosion resistance concerning the single films. The combination of the characteristics of the single layers is responsible for the superior corrosion protection efficiency of the double-layered cerium polypyrrole coating.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1569
Author(s):  
Asif Ur Rehman ◽  
Muhammad Arif Mahmood ◽  
Fatih Pitir ◽  
Metin Uymaz Salamci ◽  
Andrei C. Popescu ◽  
...  

For laser-melting deposition (LMD), a computational fluid dynamics (CFD) model was developed using the volume of fluid and discrete element modeling techniques. A method was developed to track the flow behavior, flow pattern, and driving forces of liquid flow. The developed model was compared with experimental results in the case of AISI 304 stainless steel single-track depositions on AISI 304 stainless steel substrate. A close correlation was found between experiments and modeling, with a deviation of 1–3%. It was found that the LMD involves the simultaneous addition of powder particles that absorb a significant amount of laser energy to transform their phase from solid to liquid, resulting in conduction-mode melt flow. The bubbles within the melt pool float at a specific velocity and escape from the melt pool throughout the deposition process. The pores are generated if the solid front hits the bubble before escaping the melt pool. Based on the simulations, it was discovered that the deposited layer’s counters took the longest time to solidify compared to the overall deposition. The bubbles strived to leave through the contours in an excess quantity, but became stuck during solidification, resulting in a large degree of porosity near the contours. The stream traces showed that the melt flow adopted a clockwise vortex in front of the laser beam and an anti-clockwise vortex behind the laser beam. The difference in the surface tension between the two ends of the melt pool induces “thermocapillary or Benard–Marangoni convection” force, which is insignificant compared to the selective laser melting process. After layer deposition, the melt region, mushy zone, and solidified region were identified. When the laser beam irradiates the substrate and powder particles are added simultaneously, the melt adopts a backwards flow due to the recoil pressure and thermocapillary or Benard–Marangoni convection effect, resulting in a negative mass flow rate. This study provides an in-depth understanding of melt pool dynamics and flow pattern in the case of LMD additive manufacturing technique.


Sign in / Sign up

Export Citation Format

Share Document