scholarly journals Evaluation of Energy Recovery from Laboratory Experiments and Small-scale Field Tests of Underground Coal Gasification (UCG)

2015 ◽  
Vol 131 (5) ◽  
pp. 203-218 ◽  
Author(s):  
Faqiang SU ◽  
Ken-ichi ITAKURA ◽  
Gota DEGUCHI ◽  
Koutarou OHGA ◽  
Mamoru KAIHO
Plant Disease ◽  
1998 ◽  
Vol 82 (6) ◽  
pp. 657-660 ◽  
Author(s):  
Young Ryun Chung ◽  
Suk Jin Koo ◽  
Heung Tae Kim ◽  
Kwang Yun Cho

An isolate of the indigenous fungus Plectosporium tabacinum was isolated from arrowhead (Sagittaria trifolia) in Yusung, Korea in 1990 and evaluated in laboratory and growth chamber tests as a potential mycoherbicide. The fungus grew comparatively slowly on potato dextrose agar and corn meal agar, attaining a diameter of 65 mm after 12 days at 25°C. Conidia were mass-produced in shake-cultures or in a fermentor using potato dextrose broth containing yeast extract (0.5%, wt/vol) at 25°C. When arrowhead seedlings at the 2- to 3-leaf stage were inoculated with conidial suspensions (2 × 107 conidia/ml) and incubated in a dew chamber for 18 h at 25°C, the plants developed small, brown spots on the leaves and petioles in 2 days, and were blighted completely within 7 days after inoculation. This effect was consistent on arrowhead plants from the 2- to 5-leaf stage. Another arrowhead species, S. pygmaea, was as susceptible as S. trifolia to the pathogen. Several crops, including rice, barley, and wheat and 34 other common weed species, were immune. In small-scale field tests in paddy fields during the summers of 1992 and 1993, a mean reduction of 71.3% in the number of arrowhead plants was observed following a foliar spray of a conidial suspension (107 conidia/ml). These results indicate that P. tabacinum has potential as a selective mycoherbicide for arrowhead control.


1983 ◽  
Vol 105 (2) ◽  
pp. 145-155 ◽  
Author(s):  
T. L. Eddy ◽  
S. H. Schwartz

A mechanistic computer model is presented which predicts the 3-D cavity growth during the gasification phase of underground coal gasification. Developed for swelling bituminous coals, the model also obtains reasonable cavity width and length values for shrinking sub-bituminous coals. The model predicts cavity shape and burn-through times based on the coal properties, seam thickness, water reacting and the interwell distance. Employing a 2-D boundary layer model to determine the convective diffusion rate of oxygen to the reacting walls, it is found that natural convection diffusion must be included. The model includes flow in the injection region, the swirling, mixing effect in the cavity, and transitions from thick to thin seam geometry. Simulations of the Hanna II, Phase 2 and Pricetown I field tests, as well as a parametric study on Pittsburgh seam coal, are presented.


2017 ◽  
Author(s):  
E Shafirovich ◽  
E B Jones ◽  
M Machado ◽  
J Mena ◽  
D Rodriguez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document