scholarly journals An efficient algorithm for adaptive total variation based image decomposition and restoration

2014 ◽  
Vol 24 (2) ◽  
pp. 405-415 ◽  
Author(s):  
Xinwu Liu ◽  
Lihong Huang

Abstract With the aim to better preserve sharp edges and important structure features in the recovered image, this article researches an improved adaptive total variation regularization and H−1 norm fidelity based strategy for image decomposition and restoration. Computationally, for minimizing the proposed energy functional, we investigate an efficient numerical algorithm—the split Bregman method, and briefly prove its convergence. In addition, comparisons are also made with the classical OSV (Osher–Sole–Vese) model (Osher et al., 2003) and the TV-Gabor model (Aujol et al., 2006), in terms of the edge-preserving capability and the recovered results. Numerical experiments markedly demonstrate that our novel scheme yields significantly better outcomes in image decomposition and denoising than the existing models.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Kui Liu ◽  
Jieqing Tan ◽  
Benyue Su

To avoid the staircase artifacts, an adaptive image denoising model is proposed by the weighted combination of Tikhonov regularization and total variation regularization. In our model, Tikhonov regularization and total variation regularization can be adaptively selected based on the gradient information of the image. When the pixels belong to the smooth regions, Tikhonov regularization is adopted, which can eliminate the staircase artifacts. When the pixels locate at the edges, total variation regularization is selected, which can preserve the edges. We employ the split Bregman method to solve our model. Experimental results demonstrate that our model can obtain better performance than those of other models.


2014 ◽  
Vol 53 (35) ◽  
pp. 8240 ◽  
Author(s):  
Hai Liu ◽  
Sanya Liu ◽  
Zhaoli Zhang ◽  
Jianwen Sun ◽  
Jiangbo Shu

2012 ◽  
Vol 51 (19) ◽  
pp. 4501 ◽  
Author(s):  
Jinchao Feng ◽  
Chenghu Qin ◽  
Kebin Jia ◽  
Shouping Zhu ◽  
Kai Liu ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yaduan Ruan ◽  
Houzhang Fang ◽  
Qimei Chen

A semiblind image deconvolution algorithm with spatially adaptive total variation (SATV) regularization is introduced. The spatial information in different image regions is incorporated into regularization by using the edge indicator called difference eigenvalue to distinguish flat areas from edges. Meanwhile, the split Bregman method is used to optimize the proposed SATV model. The proposed algorithm integrates the spatial constraint and parametric blur-kernel and thus effectively reduces the noise in flat regions and preserves the edge information. Comparative results on simulated images and real passive millimeter-wave (PMMW) images are reported.


2013 ◽  
Vol 333-335 ◽  
pp. 875-882 ◽  
Author(s):  
Dong Jie Tan ◽  
An Zhang

Nonlocal regularization for image restoration is extensively studied in recent years. However, minimizing a nonlocal regularization problem is far more difficult than a local one and still challenging. In this paper, a novel nonlocal total variation based algorithm for image deblurring is presented. The core idea of this algorithm is to consider the latent image as the fixed point of the nonlocal total variation regularization functional. And a split Bregman method is proposed to solve the minimization problem in each fixed point iteration efficiently. By alternatively reconstructing a sharp image and updating the nonlocal gradient weights, the recovered image becomes more and more sharp. Experimental results on the benchmark problems are presented to show the efficiency and effectiveness of our algorithm.


2019 ◽  
Vol 13 ◽  
pp. 174830261986173 ◽  
Author(s):  
Jae H Yun

In this paper, we consider performance of relaxation iterative methods for four types of image deblurring problems with different regularization terms. We first study how to apply relaxation iterative methods efficiently to the Tikhonov regularization problems, and then we propose how to find good preconditioners and near optimal relaxation parameters which are essential factors for fast convergence rate and computational efficiency of relaxation iterative methods. We next study efficient applications of relaxation iterative methods to Split Bregman method and the fixed point method for solving the L1-norm or total variation regularization problems. Lastly, we provide numerical experiments for four types of image deblurring problems to evaluate the efficiency of relaxation iterative methods by comparing their performances with those of Krylov subspace iterative methods. Numerical experiments show that the proposed techniques for finding preconditioners and near optimal relaxation parameters of relaxation iterative methods work well for image deblurring problems. For the L1-norm and total variation regularization problems, Split Bregman and fixed point methods using relaxation iterative methods perform quite well in terms of both peak signal to noise ratio values and execution time as compared with those using Krylov subspace methods.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jianguang Zhu ◽  
Kai Li ◽  
Binbin Hao

Total variation regularization is well-known for recovering sharp edges; however, it usually produces staircase artifacts. In this paper, in order to overcome the shortcoming of total variation regularization, we propose a new variational model combining high-order total variation regularization and l1 regularization. The new model has separable structure which enables us to solve the involved subproblems more efficiently. We propose a fast alternating method by employing the fast iterative shrinkage-thresholding algorithm (FISTA) and the alternating direction method of multipliers (ADMM). Compared with some current state-of-the-art methods, numerical experiments show that our proposed model can significantly improve the quality of restored images and obtain higher SNR and SSIM values.


Sign in / Sign up

Export Citation Format

Share Document