split bregman method
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 13)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 13 (21) ◽  
pp. 4231
Author(s):  
Fangfang Shen ◽  
Xuyang Chen ◽  
Yanming Liu ◽  
Yaocong Xie ◽  
Xiaoping Li

Conventional compressive sensing (CS)-based imaging methods allow images to be reconstructed from a small amount of data, while they suffer from high computational burden even for a moderate scene. To address this problem, this paper presents a novel two-dimensional (2D) CS imaging algorithm for strip-map synthetic aperture radars (SARs) with zero squint angle. By introducing a 2D separable formulation to model the physical procedure of the SAR imaging, we separate the large measurement matrix into two small ones, and then the induced algorithm can deal with 2D signal directly instead of converting it into 1D vector. As a result, the computational load can be reduced significantly. Furthermore, thanks to its superior performance in maintaining contour information, the gradient space of the SAR image is exploited and the total variation (TV) constraint is incorporated to improve resolution performance. Due to the non-differentiable property of the TV regularizer, it is difficult to directly solve the induced TV regularization problem. To overcome this problem, an improved split Bregman method is presented by formulating the TV minimization problem into a sequence of unconstrained optimization problem and Bregman updates. It yields an accurate and simple solution. Finally, the synthesis and real experiment results demonstrate that the proposed algorithm remains competitive in terms of high resolution and high computational efficiency.


Author(s):  
Minghua Zhao ◽  
Qin Wang ◽  
Jiawei Ning ◽  
Abdul Nasir Muniru ◽  
Zhenghao Shi

2020 ◽  
Vol 62 ◽  
pp. 102095
Author(s):  
Jinhua Sheng ◽  
Bin Chen ◽  
Yangjie Ma ◽  
Yuchen Shi

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4540 ◽  
Author(s):  
Xiong ◽  
Zhao ◽  
Shi ◽  
Wang

The Split Bregman method (SBM), a popular and universal CS reconstruction algorithm for inverse problems with both l1-norm and TV-norm regularization, has been extensively applied in complex domains through the complex-to-real transforming technique, e.g., MRI imaging and radar. However, SBM still has great potential in complex applications due to the following two points; Bregman Iteration (BI), employed in SBM, may not make good use of the phase information for complex variables. In addition, the converting technique may consume more time. To address that, this paper presents the complex-valued Split Bregman method (CV-SBM), which theoretically generalizes the original SBM into the complex domain. The complex-valued Bregman distance (CV-BD) is first defined by replacing the corresponding regularization in the inverse problem. Then, we propose the complex-valued Bregman Iteration (CV-BI) to solve this new problem. How well-defined and the convergence of CV-BI are analyzed in detail according to the complex-valued calculation rules and optimization theory. These properties prove that CV-BI is able to solve inverse problems if the regularization is convex. Nevertheless, CV-BI needs the help of other algorithms for various kinds of regularization. To avoid the dependence on extra algorithms and simplify the iteration process simultaneously, we adopt the variable separation technique and propose CV-SBM for resolving convex inverse problems. Simulation results on complex-valued l1-norm problems illustrate the effectiveness of the proposed CV-SBM. CV-SBM exhibits remarkable superiority compared with SBM in the complex-to-real transforming technique. Specifically, in the case of large signal scale n = 512, CV-SBM yields 18.2%, 17.6%, and 26.7% lower mean square error (MSE) as well as takes 28.8%, 25.6%, and 23.6% less time cost than the original SBM in 10 dB, 15 dB, and 20 dB SNR situations, respectively.


Author(s):  
T. T. T. Tran ◽  
C. T. Pham ◽  
A. V. Kopylov ◽  
V. N. Nguyen

<p><strong>Abstract.</strong> Image denoising is one of the important tasks required by medical imaging analysis. In this work, we investigate an adaptive variation model for medical images restoration. In the proposed model, we have used the first-order total variation combined with Laplacian regularizer to eliminate the staircase effect in the first-order TV model while preserve edges of object in the piecewise constant image. We also propose an instance of Split Bregman method to solve the proposed denoising model as an optimization problem. Experimental results from mixed Poisson-Gaussian noise are given to demonstrate that our proposed approach outperforms the related methods.</p>


Sign in / Sign up

Export Citation Format

Share Document