scholarly journals Citric Acid Production of Yeasts: An Overview

2021 ◽  
Vol 5 (2) ◽  
pp. 79-91
Author(s):  
Bilge Sayın Börekçi ◽  
Güzin Kaban ◽  
Mükerrem Kaya

Abstract Background Citric acid, an intermediate product of the Krebs cycle, has a wide usage area in the food industry since it has some functions such as acidulant, flavouring agent, preservative and antioxidant. Although molds are the most commonly used microorganisms in the citric acid production, it is known that there are significant advantages of using yeasts. Purpose and scope The microbial citric acid production mechanism needs to be well understood to make production more efficient. In this study, the yeasts used in the production, fermentation types and the factors affecting production were reviewed with studies. Methodology Although production of citric acid can be produced by chemical synthesis, the fermentation is preferred because of its low cost and ease of use. More than 90% of citric acid produced in the world is obtained by fermentation. Results Yarrowia lipolytica, Candida zeylanoides and Candida oleophila are evaluated for citric acid production with substrates such as molasses, glucose, sucrose and glycerol. On the other hand, there is great interest in developing processes with new substrates and/ or microorganisms. Conclusion Although the microbial strain is an important factor, the factors such as carbon, phosphorus and nitrogen sources, aeration, the presence of trace elements and pH are also parameters affecting the production.

1966 ◽  
Vol 12 (5) ◽  
pp. 901-907 ◽  
Author(s):  
H. Horitsu ◽  
D. S. Clark

Ferrocyanide at concentrations of less than 30 p.p.m. (the amount tolerated in citric acid fermentation of beet molasses) had no measurable effect on citric acid production or on the oxidation of glucose or Krebs cycle compounds by resting cells of Aspergillus niger or on the growth rate of this organism during submerged fermentation of beet molasses. Concentrations above 30 p.p.m., however, stimulated citric acid formation in resting cells, but markedly inhibited cell development in growing cells. This inhibition of growth was the main cause of the detrimental effect of high concentrations of ferrocyanide on citric acid formation in molasses; good growth throughout the fermentation was essential to high acid yield, inhibition of growth could be released at any time during the fermentation by addition of sufficient ZnSO4 to reduce the ferrocyanide content to below 30 p.p.m. No evidence that ferrocyanide favors citric acid accumulation by blocking a reaction in the Krebs cycle was found.


2021 ◽  
Vol 17 (3) ◽  
pp. 085-093
Author(s):  
Sweta V. Lende ◽  
Heera Karemore ◽  
Milind J. Umekar

Citric acid is the most important organic acid produced in tonnage and is extensively used in food and pharmaceutical industries. It is produced mainly by submerged fermentation using Aspergillus niger or Candida sp. from different sources of carbohydrates, such as molasses and starch-based media. In view of surges in demand and growing markets, there is always a need for the discovery and development of better production techniques and solutions to improve production yields and the efficiency of product recovery. To support the enormous scale of production, it is necessary and important for the production process to be environmentally friendly by utilizing readily available and inexpensive agro-industrial waste products, while maintaining high production yields. This review article for fermentation of citric acid and Microbial production of citric acid, Substrates and strategies of citric acid production for Surface fermentation, Submerged fermentation, Solid-state fermentation and also the effects of various Factors affecting of citric acid fermentation conditions are Carbon source, Nitrogen limitation, Phosphorus source, Lower Alcohols, pH of culture medium, Trace elements, Aeration and Other factors. citric acid recovery options and the numerous applications of citric acid, based on the literature review information of citric acid production by fermentation technology.


1963 ◽  
Vol 30 (3) ◽  
pp. 365-379 ◽  
Author(s):  
N. F. MILLIS ◽  
B. H. TRUMPY ◽  
B. M. PALMER

Sign in / Sign up

Export Citation Format

Share Document